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A Boundary Element Technique in Transonic Flow /1
Yang Zuosheng

(Nanjing Aeronautical Institute)

I. Introduction

The name "boundary element" originates from C.A. Brebbiat I].

The characteristic of the boundary element technique is that all

the nodal unknowns are located on the surface boundary. p
Consequently, the numerical calculation is simplified and the

required computer capacity is reduced. In this work, this

technique was extended to the nonlinear transonic flow about a

three-dimensional wing. A weighted residual formula suited for

the transonic range was established and directly applied to the

full velocity potential equation. In order to ensure the

irreversibility of shock waves and to facilitate the solution to

converge in the supercritical flow region, we added an artificial

viscosity term to the full velocity potential equation.

Furthermore, the flow field was divided into small subdomains and the

-Green theorem was applied to each element. If the selected

i interpolation function has C1 continuity with respect to the
velocity potential for every element, then the surface

integrals of two neighboring elements cancel each other at the

interface so that the remaining surface integral (consequently

the nodal unknown) is located on the wing boundary. Thus, the
boundary element integral equation was derived.

II.. Full Velocity Potential Equation with Artificial Viscosity

The three-dimensional continuity equation is:
(#) fi(pV) 3(pW)ff
a' (1)

where the x-axis is the flow direction, y-axis points at the

right wing and x, y and z form an orthogonal right-handed
coordinate. The full velocity potential equation for a

nonviscous potential flow can be derived from equation (1):



- - - *1O
A

-WU.,-WVO.,+ (a', -T") , 0 o (2)

:-where P is density and a is speed of sound. U = , V -- and W
= 6z represent the three velocity components along x, y and z

axes, respectively.

In the supercritical flow region, the following artificial

compressibility (viscosity) was added to prevent an expansion

shock wave solution and to eliminate any shock wave discontinuity
by referring to equation (1):

ox P] 6[Y k J (3)

where ,= ax, V2 = Ay, 3 = Az. A is a switch function.

A m ax. (0, 1 -- ( 4)

When the local flow Mach number M is less than M A is zero. In

this work, M2 = 0.8. Op/8 xp/0y and op/o represent the partial

differentiation of p in the x, y and z direction, respectively.
If the artificial compressibility term (3) is superimposed onto

the continuity equation (1), the local density will be replaced

by the value upstream when the local Mach number exceeds Mc in

order to permit receiving information from upstream. After

expanding equation (3) and adding it to equation (2), the

artificially viscous full velocity potential equation can be

expressed as (in tensor symbols and abbreviated format):

(5)

where

K,,-a, o'-4. ,4. 1-A< ,, ..,. ,) + A&,,a'-4. ~ 4,@ , ,4, ,,,)J ( 6 )

:i:- " '" " " " " " ... .. . " " ' " ' " " " " ' " "" " '" " " " "2

. " - -. -. . .* * =. o-. - . . * . = , ,. . .o •.- . ° . . .



The repeated subscripts indicate summation in the subscript

range. The subscript "," represents differentiation 6ij= 0 (when

i = j) and 6ij= 1 (when i = j). &1 62 and 3 represents the 4

values at (x-Ax, y, z), (x, y-Ay, z) and (x, y, z-Az),

respectively.

III. Boundary Element Integration Equation

Equation (5) can be rewritten as:

K , (Ki,,. 1),-,=0

i,j=1,2,3 (7)

Using a finite element method, we divided the a region of the

flow field into M elements. If 4 is replaced by its

approximation 4 in each element, then the weighted residual

expression for equation (7) is:

(Kj_),dDi j.,K,.,GdD=o (8

For simplicity, the superscript "-" is omitted in the following.

G is a weighted function yet to be determined. We applied the Green

theorem to each element 0e in the first volume integral on the
left side of equation (8). If the interpolation function chosen

for 0 has C1 continuity, i.e., 0 and its first order derivative is

continuous across the boundary, then the boundary surface

integrals of neighboring elements will cancel out. After

applying Green theorem twice to the first integral on the left

side of equation (8), the surface integral is located on the

boundary S. Thus, equation (8) becomes: (with respect to wings,

including external surface and its rear vortex surface):

GK,,O,,dS- j~ j.j~S+ ~,,,Q
11 . .a.(9)

+i 0 ,K,,* ,dO-i 4.. K,. 1GdD=O

where Se is the area of the element e on the boundary S. If the

element De is divided small enough, then Ku can be assumed to be
th

a constant in each element. In the n iteration, its value is

3

w.*.*-..~-~~.



(n-1)

equal to that in the middle of the element, Kij in the /3
(n-1)th iteration. Thus, Kij,i = K " 0 in each element. It

is a step function. Its derivative Kij,i or K ii~ is a pulse

function. In order to satisfy the continuity requirement for

O.j across the boundary, we assumed that the variation of Kij
linear in the vicinity of the boundary. Thus, the volume

integral in equation (9) is reduced to the following surface

*integral along the boundary:

O. ,.K,,.dD=Z OG..LK,,.dS.+F, /G.,AK,,dSo +

L

+E ,AK,,dS,(10)

*O.iK,,, GdD=ZGo AK,.dS, + GO.,AK,,dSQ+

+ ,,AK,,dS,?

i=1,2,3 i -- z, , 3(11)

where P, Q, and R are the local coordinates for the element. dSp
dS and dS represent the differential areas on the boundary
Q dR

when P = const., Q = const., and R = const., respectively. J, K,

and L represent the total number of boundaries on the planes

where P = const., Q = const., and R = const., respectively.

Hence, equation (9) can be written as the following in the nth

iteration. GK"I S- K'"G. nidS + ,K: -"G.,dL2+
*I* I# $ I I

+ jG - .)' I GdS, +d AK .' (G. .

(12)

-'- ,dSo+ ,AK :'.-, '(4,G..-G, .,,.-,dS,=o

i , j2=1,2, 3

If Kij is a positive definite (which is always satisfied in

a subcritical flow), we obtain the fundamental solution G to the

following equation as the weighted function G:

4



K:-' "G.,--# ,-;,) (13)

Whe (n-i) is constant, the basic solution to this equations[2 ]  1
is ni

G ( "; I K " I1 R (13)'

where 6 is a pulse function.

R'-K '(x,-x)(x,-x;), i, j=1,2,3 (14)

KiJ is the inverse matrix of Kij and IKiJI is the determinant of

the matrix K xi and xi' represent the coordinate vectors of a

fixed point and a moving point, resectively. When a fixed point

and a moving point xi areoutside an element ne' then xi 0 xi

The third integral in equation (12) is zero. When the fixed /4

point xi is inside an element ne' based on the characteristic of

a pulse function, the volume integral of the element is -416(xi).

In the supercritical flow region, Kiu is no longer positive

definite; however, K (n-i) in equation (13) must be positive

definite. Therefore, the third term in equation (12) must be

rewritten if the neighboring upstream element is still

supercritical:

i j K i,- G. j.dD= I 1"G. ,dD+ H (15) ,-

where

(16)

Here, Kij represents the Kij value at the first subcritical

element upstream from the supercritical element. M is the total

number of supercritical elements. Because M is finite, the

workload to calculate the volume integral H is also finite. -

Thus, the following boundary element integral for velocity

potential can be obtained from equation (12):

5. . . . . -



G~,('fOKG,.,ndS -t-B-H (17)

where , B= :,(a:- '., ' dS,+ : , .- ,.) -,dSr-

(18)
0-1I

AKij represents the difference between two neighboring Kij

values. By respectively differentiating equation (17) with

respect to x, y and z, the corresponding boundary conditions are

q =0 (on wing surface)

ACp =0 (on tail vortex surface) (19)

= VW x (at infinity)

where &Cp is the difference of pressure indices between the top

and bottom surface, and q is the full velocity.

* -.- In the transonic small perturbation field for a thin wing,

the boundary element integral equation (17) can be simplified as:• k.dS I G- A0dj
4x9 (x,y,z)= AG. ' dS. (20)

Differentiating equation (20) with respect to x, we get

.a3 x (21) /5

Di f e a dS, +PH

axI It _-F -d

Differentiating equation (20) with respect to y, we get
N

.1" 4,ruv(x, y, z) % c)G*" d

Aql (G-l dS- A I3G7- dSV- . 6 ISa ; a; (22)

"aK( - dS.+ H

where xp represents the x coordinate on the plane where P

const. Differentiating equation (20) with respect to z, we get

6

d G. ( •.-,



4XWX''Z)V 'ATdS- A ___T dS I+
e (23)

~KG dSi

For a small perturbation flow field, we obtain the following from

equation (6):

Ki= 1-M:- [3-(2-.,)M2Mu(x, ,z) +A[3-(2- )M.] x

M-u(x,y,z) -A[3- (2-,)M2JM'u(x-Ax,y,z)
/Kz2fKj,= 1 (24) k

tK12 j=K,,ffK23K,=Ki, K=K =0

From equations (13)' and (14), we get

G"'" fl/v ( -D K(,: , [(y_-V)!+ (Z-C 2 (25)

In equations (20) - (23):

A T a (L , ) V (1 , , .)- I(1 , n -) 0 ( 2 6 )
A ( 0) = (L ,7, 0.) (P 71, 0

V is the small perturbation velocity potential. u, v and w are

the small perturbation velocity components along x, y, and z,

respectively. I is the specific heat (7 = 1.4 for air). S' is" e

the area of an element e on the z = 0 plane where the boundary

surface S is considered to be located in approximation. In order

to limit the integration to the wing region Sw, we substituted

equation (25) into (20). The first integral on the right side of

equation (20) was integrated by part:

4JTq,(x,y,z) A Uy,), + / - - "

Similarly

S.. di -. , ,, G- O.)e-., (27)

7",
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4xu (x, y,-z). 5 A_ ,7, , , 0 7 x

xd -- d A2!S K 1 1 ( -G i)(L +G - G 1-L

(28)

Sl4,x Z'V+S. Z) 0)
lz lis,, (y- ) , +

XdS-. GcU-'k- ~aoS . d : .K-- -"bi1-

O3H

x dS + 6H (30)

When the fixed point (x, Y, z) is located on the wing

%.surface (z = 0+), the following can be derived from equations

(28) and (30):

N0 a G.3pS+ (31)
4jTcu(x,y,O.) +U(X,Y,0JPA- 2 1L 9'd

.-
s .

8



4xCw(x,y,O-)+w(x,u,O)3= i2. Au-,i-,O)

+ 1dSFGV,(x-b+K1I1cy(_)2+zJ +F+G (32)

where (

a a t u-a,-.,

F=2-aT.AK1 ,(, aG A9P dS, (33) /7

Oz oI 
a

For a thin wing, the boundary conditions (19) can be simplified

as:

w = Oy/az = dz'/dx' -a (on wing surface)

aCp = 2 au = 0 (on tail vortex surface) (34)

v, (= 07 :

where z' is the vertical coordinate of the lower wing surface in e
the body axis coordinate x', y' , z' and a is the attack angle.

The first term on the right hand side of equation (31) is similar

to the linearized small perturbation thickness integral;

therefore, the result of the linearized equation can be directly used.

Equation (32) can be considered as the expression for a

linearized small perturbation lift problem when the effective

washdown velocity at the control point is w(x,y,O+) + w(x,y,0-)/2

+ (F+G)/4 . Therefore, once the values of F and G are

determined, it is possible to solve equation (32) by familiar

numerical methods for the linearized lift problem (such as

nuclear function method and vortex lattice method) 4  to obtain

the corresponding Au(x, y, 0) distribution along the wing surface

and the F and G values.

IV. Solution

We divided it along the wing surface into N quadrangular
w

elements. Moreover, planes (p = const..) perpendicular to the

9 .



* - wing surface were made along the chord direction of the wing

element. These planes extend to a height approximately equal to

* . 2 times the chord length. Many quadrangular elements were

* divided along the plane, as shown in Figure 1. Figure 1 only

*shows one of the P = const. planes and the partitioning of its

elements. In order to ensure that q has C continuity across

the boundary on a P =const. plane, we expressed 9 in an element

approximately as:

T Lj9;, + L, L~w, + -LT,+ L, L~w2 + L79q + L~v

where L i (1 1,2----,- 12) is the interpolation function. The

* subscripts 1, 2, 3, 4 of v, w represent the values at

* corresponding nodal points of the quadrangle, as shown in Figure

2. In the element coordinate QR shown in the figure, L. can be

expressed as 31

L, -f (R) f, (Q), L2 =g1 (R)g, (Q)
L3 =f1 (Q)g,(R), L.=f,(Q)f,(R)1
L, g(Q) f ,(R), L,=f,(Q)g.(R)
L,=f. (R)f1 (Q), L, g(R) g,(Q)

f ,Iz(Q)ga(R), L,,=f,(Q)f2(R)I
~Cgi~ (Q J, gQ4(R), L,, f (Q)g2 (R) (6

R /8

V. ,

Figure 1 Figure 2

1. p - const. plane
2. wing surface

01



The functions are

f 2(0)1322 29

The variable 9 represents R or Q. The overall coordinate of a

* point in an element can be expressed by the overall coordinates

* of its four nodal points:
Y -' (1-R)(1-Q)vl,+±(1+Q)c1...R)y++(+R)cl+Q)y,+

4 4

+,o -- I- -Q - ) +R)y

44

The value of u in each element on a P =const. plane can be

approximated by the u value at the center of the element. The

solution finding process is:

I-

1. First, we assume the u(x, y, 0+) values at the center of

each element on the wing surface, the values of v and w at the i
nodal points of each element on P - const. planes, and the values

of u at the centers of elements. They are used as initial

values.

2. By substituting equation (35) into (33), the values of D, /9

*E, F, and G are obtained from the given initial values after

transforming the integration variables to R and Q.

0) at the center of each element on the wing surface can be

obtained from equation (32) based on the boundary condition (34)

and calculated values of F and G.

appoxiate by .h ..au at .h .ete of .h elme. .The .....

LS

.................... ng... .... ... .... ...



4. The calculated values of D and E, as well as the value of

u(x, y, 0-)- u(x, y, O+)-Au, are substituted into equation (31).

Furthermore, equation (31) is satisfied at the center of each

element on the wing surface so that u(x, y, 0 ) can be obtained

at the center of each element on the wing surface.

5. According to equations (27), (29) and (30), the values of

9,,v and w are calculated at each nodal point on P = const.

planes. The value of u at the center of each element on a P =

const. plane is calculated based on equation (28).

6. Steps 2, 3 and 4 are repeated until the difference of two

consecutive values of u(x, y, 0+) at the center of each wing

surface element is less than the specified value.

In order to allow the solution to converge in the

supercritical region, the contribution from the supersonic point

(x, y, 0-) should equal zero.

V. Examples

The exanples shown in Figures 3-5 are identical to those in

reference [4]. The number of elements on the wing surface is

also equal to that in reference [4]. In the P = const. plane, it

was partitioned into five regions along the height according to

the law of tangent (from 0* - 63.40). The partitioning in the

span direction is similar to that on the wing surface. From

these figures, the results in this work agree well with those in

references [4] and (5]. However, when there is an attack angle,

the front fringe result of this work is between those of

references [4] and [5]. Figure 6 shows the calculated pressure

distributions along the :hord direction at three span positions

of a dull leading edge rectangular wing by using this method and

the difference method used in reference [6]. One can see that

they are in good agreement.

12
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O0.4 tC 9

0
0. 2 0. 1.0

0

Figure 3. Rectangular Wing with Aspect Ratio 4 (double
arc wing, relative thickness 6%), Mm 0.908,
a 0

1.(wing tip)
2. reference [5]
3. reference [4]
4. this work
5. wing root

13



IC,

-0.2 -

* AC

Figure 4. 30 Equi-chord Length Sweptback Wing with Aspect
Ratio 4 (double arc wing, relative thickness 67.),
Mm 0.908, a =0

1. wing tip
2. reference [5]
3. reference [4]
4. this work
5. wing root

14
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/10

C9

*0.4 CP

6.-06 .6 1.

9-3' M.-O.S5

Figure 5. Rectangular Wing with Aspect Ratio 2 (double arcI
wing, relative thickness 6%)

1. wing tip
A".2. reference [5]

3. wing root

4. upper wn ufc ti ehd

lower wing surface (ref.(4J)
5. uppe
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0.2 0.4 0. 6 .0. 9-0.9

0.0.571-0.*5

Figure 6. Rectangular Wing with Aspect Ratio 5 (Model
NACA64AOO6)

1. this method
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A BOUNDARY ELEMENT TECHNIQUE IN

TRANSONIC FLOW

Yang Zuosheng

(Nanjing Aercmautica! Institute)

Absttact

The boundary element technique is now extended to study the nonlinear

transonic flow about three dimensional wings. A weighted residual formu--

lation, valid throughout a Mach number range including transonic, is iL

developed and applied directly both to the nonviscous full velocity poten-

tial equation and transonic small perturbation equation. In order to

ensure the irreversible character of shock wave and to make the solutions

stable and converged in supercritical region, an artificial viscosity term

is introduced. We partition the flow domain into a number of small

elements and apply the Green theorem to each element. The boundary

integral equations are obtained by using an interpolation function which

is C' continuous for velocity potential and finally solved by means of

finite element collocation method.

7I
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The Exploration of the Spatial Oscillations in Finite

Difference Solutions for Navier-Stokes Shocks

Zhang Hanxin

(China Aerodynamic Research and Development Center)

Abstract

In this paper, the cause for the oscillations in the

upstream and downstream difference solutions was investigated.

The study showed that adding a second order diffusion term to the

Navier-Stokes equation could smooth out the shock wave. However,

the third order dispersion term and fourth order diffusion term

could cause oscillations in the upstream and downstream solutions

under certain given conditions. If the second or third order

difference method is used to solve the NS shock wave equation,

the solution oscillates because of the dispersion and diffusion

terms.

I. Introduction

When a difference method is used to solve a shock wave

motion, if the difference method is of the first order of

accuracy (or with an added second order diffusion term), the

shock wave is smeared. If the difference method is of higher

orders of accuracy such as second or third orderoscillations

frequently appear upstream and downstream [1 ][ 21 . In reality,

there is no oscillation[3 ]. This oscillation still exists when

the computation stabilizes. It is significant to explain the

cause of this oscillation.

In this paper, an attempt was made to perform an

enlightening analysis. We believe that because the step lengths

of spatial lattice and time are not zero in the difference

equation, it is approximately correct to use the difference

quotient to replace the derivative. Therefore, there is a finite

difference between the difference equation and differential

equation. For example, the model equation for the initial value

,°*. . . . . . . . . . . .. . . . . .
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problem is

u cu &'u
T ox ax, .

In the corresponding difference equation, when the difference is

expressed in a Taylor series the equivalent equation is:
au ,au a3Zu au

- x 6 + X, (x (1.2)

This equation is called the correction formula for (1.1) where K

is the accuracy of the difference lattice and vn is a coefficient

related to time and spatial steps. For compatible difference

lattices, when the time and spatial steps approach zero, vn - 0.

Comparing (1.1) with (1.2), the difference between differential

and difference equation is:

. .. . (1.3)

This difference not only affects the stability of the difference

equation but also causes the difference between the solution of

the difference equation and that of the differential equation.

According to this understanding, we used the small perturbation

method to analyze the shock wave flow upstream and downstream.

We studied the effect of the second, third, and fourth order /13

terms on the right hand side of the correction equation to

illustrate the correlation between the difference format and the

oscillation in the solution. Some meaningful conclusions were
also provided.

II. Effect of Second, Third, and Fourth Order Derivative

Terms in the NS Equation of Shock Wave Motion

1. Starting Equation

In order to simulate the effect of Ek in the correction

formula, let us study a one-dimensional normal shock wave motion

(see Figure 1). The basic equation set is:

19
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-- -/-a- 2y ax i

af4 j [] &U] (2.1)

Here, p = p.u./u, p and u are the density and the velocity of the

gas, t is the time, x represents th coordinate (see Figure 1),

is the adiabatic index, v = (4/3)p. u is the viscosity of the

- gas which is calculated according to:

(A)

where

2 v--1MU- u (B

*_ i The subscript "- " represents the value at x - -- , M is the Mach

*--"number and n is the exponent. In equation (2.1)

be"V- _ -- 1 I 1

vi is the coefficient of the added derivative terms which is

assumed to be a constant. It should be pointed out that when vi

's (i = 2,3---) are zero, equation (2.1) is an accurate NS

equation accurately describing the positive shock wave motion in
[3]

normal conditions . Therefore, the steady state solution to

equation (2.1) is the correct shock wave. When vi's are not zero

and assume certain values related to the lattice step, equation

(2.1) simulated the correction formula with a specific difference

lattice. Hence, we can study the effect of second and third

-i- order terms by solving equation (2.1).

02
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U2

u~1

0 x

Figure 1. Velocity Distribution of One-dimensional Positive
Shock Wave

1. real viscous shock wave
2. higher order difference calculation

2. Effect of Second, Third and Fourth Order Terms

If the distribution of any physical quantity of a nonviscous

positive shock wave is used as the initial value, it has already

been proven that (2.1) has a steady state smooth shock wave

solution when v = v = v = -[3]. Its shock wave zone is2 3h 4
very thin (assuming the center is x = 0). Outside the shock wave

region, the physical quantities rapidly approach the upstream and

downstream values of a nonviscous shock wave. If v , v ,--- are"""2 3
not zero, although (2.1) still approaches its nonviscous value

far away from the shock wave region yet some oscillation emerges

near the shock wave (See Figure 1). In the following, the /14

correlation between v 2 , v, v4 and the oscillation is analyzed.

In reality, if we on y consider the presence of v2 , v3 and v

then (2.1) gives the following when the solution is stabilized:

" ' _ ( -1( -,,

dxa dx -(2.2

. where

21
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* - - - ~.- C r C C> rs--.-.- r'7 .' 7 C7'r - - - 7-.- TO - v

- U

u. (2.3)
.~ ='/ - (1 2 1

(2.4)

Obviously j = 1 and U =U.2 are the upstream and downstream values

of the nonviscous shock wave, respectively.

Let us study the nature of the solution to (2.2) near U = 1

and i = U2 . Because u = 1 when x- -- and U = U2 when x-- , this

investigation can provide the characteristics of the solution

upstream and downstream.

Let U = 1 + u' (upstream) (2.5)

u= u2 + u' (downstream)

Assuming Iu'I<<I in the upstream and IuI<<U2 in the downstream,

equation (2.5) is substituted into (2.2). After omitting higher

order small terms beyond u
'2, we get

I ' -V3 V4  . k-= u'

' u' &'u =(upstream)
V, ax-- - k' (downstream) (2.6)

where
/A, =V, "V, , V., + V2 qY

-, --- ipu,.(1 - >0

(2.7)k - '+1 __u_1- _E

2--- u 2-->0

vJC and v2, are the v values at U = 1 and u2 respectively.

Obviously, (2.6) is a linear equation whose solution can easily

be determined by the following characteristic equations:

Pd,,,1' 1A IL - A +k, =0

v',A' YA'-'',A k 0 (upstream)
(downstream) (2.8)

The discussion is carried out in the following cases:

(1) P, and P2 are greater than zero and v3 =v 4 =0. The

characteristic root of (2.8) is

22
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, = (upstream)

(downstream)

The general solution to (2.6) is: /15

U = Ai';- (upstream)

u =B
(downstream)

Or, one can get from (2.5) that

-I 1Ae.7
_ ~+,e (upstream)

,+Be ;,(downstream) (2.9)

(2.9) shows that the upstream solution smoothly approaches 1

exponentially when x- -m . When x +- the downstream solution

snoothly approaches u2 wihtout any oscillation.

(2) i>0 2>0, v3 > 0, and v4 = 0

From (2.8) in the upstream if
---- >4  l

(2.10)

then both characteristic roots are positive real numbers. The

general solution to (2.6) is:
u =1+Alexp + L/pI-4wk +

(2.11)S+A, exp[P, I X :

Here, A1 and A2 are integration constants and the solution does

not oscillate. If

<4
(2.12)

both characteristic roots of (2.8) are complex numbers. S
Therefore, the general solution of (2.6) is:

23
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uj=1+Aiexp(#L X) cos (--vAr.-m-,~ X)

+Azexp(J X sin (-.vzX~
(2V3  21/ (2. 13)

This equation shows that the solution exhibits oscillations in the

upstream. Moreover, the amplitude gradually increases with

increasing x. Figure 2a shows this change.

* - In the downstream region, because all characteristic roots

of (2.8) are real and Ui - 'U when x -*,the solution to (2.6)

is:

i-ZAex A2 (p2 4kV3)]xj (2. 14)
U~z rn~~p 1 [2', 2vs j

One can see that the solution does not oscillate.

If we assume that pl U2 > 0, v 3<0 and v 4 = 0. The solution

does not show oscillation upstream as one can see by the same

analysis. In the dbownstrean. however, if

<4k' Iv, I

the solution shows oscillations(see Figure 2b). /16

Figure 2a , '>0v 3 >0 and v4 =0

24



4 v3

In the upstream region, the characteristic roots, given by

(2.8) are:

-P t+2 '

k. (2.15)

where

kTI

Considering U 1 when x -mthe solution (2.6) is:

ii =+Aek cos(Ap'x) +Az 1. sin(A~cz1 x) (2.17)

Here, A1 and A2 are integration constants. This solution

obviously oscillates. Furthermore, the amplitude increases withI
increasing x (see Figure 3).

For the downstream region, the solution of (2.6) can be

obtained similarly:

UI+ B,e~ cos (A x)BRe~ sin (A "x) (2. 18)

25



where

"":: ': -'2 (AL)'- (2.19)

It shows that the solution also oscillates downstream. Moreover,

the amplitude increases with decreasing x (See Figure 3).

(4) v4, v3 , p1 and P2 simultaneously are present. /17

Assuming v4 > 0, based on the determination formula of the

- third order equation one can easily find out that if

( I+ + 17l, k. )' <1 (2.20)

then the solution of (2.6) oscillates upstream. In the

downstream area, if

"iV- 3,' + .LA2, ,.--7- k,vs, ).(2.21)

2 2

• . then the solution of (2.6) also oscillates. From (2.20) and

" (2.21) one can see that when v3 > 0, v4 # 0 and p, = 2 = 0, it

always oscillates upstream. In the downstream, however, only

when

v~27

it exhibits oscillation. If v3 <0, v4 # 0 and p, = = , there

arealways oscillationsdownstream. Upstream, however, only when

> 4,

I'Fl 27

it exhibits oscillations (see Figure 4).

2
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III. Discussion on Upstream and Downstream Shock Wave

Oscillation in Difference Calculation

Based on the above analysis, one can see that:

1. In the viscous shock wave propagation equation, a smooth

solution can be obtained by adding v2 alone. The second order

diffusion term can smooth shock waves. If second and third order
-.1 V terms are added, when v3 >0 and

;'" . k, <4

the upstream shock wave solution shows oscillations and the

downstream solution is smooth. If v3<0 and /18

" " , , , <4

the downstream solution exhibits oscillations and the upstream

solution is smooth. If the fourth order term is added, its

effect is to simultaneously cause or aggrevate oscillations in

the upstream and downstream.

2. Because the second order lattice has a third order

dispersion term and a fourth order diffusion term and v2 = 0, the

upstream and downstream shock wave exhibits oscillations when v =

0 or very small. If the effect of the fourth order diffusion

term is far less than that of the third order dispersion term,

then one side of the shock wave exhibits larger oscillations

depending on the sign of the dispersion term. In order to

minimize oscillation; we should try to reduce the third and

fourth order terms. For the explicit MacCormack form, if the

Courant number approaches 1 and v3 and v4 are small, the

oscillation should be small. It has already been proven in the

numerical experiment in reference [1].

3. The fourth order diffusion term appears because v2 =v 3

- 0 in the third order lattice. Therefore, it is unavoidable to

have oscillations in the upstream and downstream shock wave when

v = 0 or is very small. However, it is generally smaller than

the second order oscillation. To further minimize oscillations,

"* 28



we should reduce one fourth order diffusion term. It is expected

that the fourth order lattice only has negligible oscillations in

the upstream and downstream because v2 = v3 = v4 = 0. The effect

of higher order dispersion and diffusion terms is very small.

4. In order to verify the accuracy of these conclusions, we

gathered some numerical shock wave experiments in the literature

based on the following Burgers equation:

c T+(U a x J~

Figure 5 is the calculated result given in reference [4] using

the first order difference lattice. When a = 0.038925, v = u "_nd

x = -, u = 2.593467. When x = , u = 1.393784. One can see

that the shock wave curve is smooth. Figure 6 shows the

calculated results given in reference [5] using the explicit
-7MacCormack second order lattice. When a = 0, v = 10 and x -

u = -1. When x = *, u = 1. One can see that oscillation

occurs both upstream and downstream. Figure 7 shows the results

given in reference [4] using the third order lattice. The

conditions are identical to those in Figure 5. One finds that

there are oscillations on either end of the shock wave. However,

it is much smaller than that using the second order lattice. -

Figure 8 shows the results given in reference [6] using the

fourth order lattice. When a = -(1/2) and x = --, u = 1. When x

= , u = 0. The lattice Reynolds' number is 2.5. One can see

that there is almost no oscillation in the shock wave.

Correspondingly, if the second order lattice is used, oscillations

will appear (see [6]).

29
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Figure 5. Burgers Equation Shock Wave Solution Given by
First Order Difference Lattice(4]

Figure 6. Burgers Equation Shock Wave Solution Given by
Second Order MacCormack Lattice(S)

Similar conclusions are derived by numerical simulation of the

Euler equation solution of the shock wave [1,2]

30
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- 0 -. 0 0 140 X

Figure 7. Burgers Equation Shock Wave Solution Given by
Thirdh Order Lattice[J

Results of numerical simulation completely confirmed the

accuracy of the conclusions. Therefore, the cause of oscillations

in upstream and downstream shock wave solutions using a

difference method is explained.

During the course of writing this paper, the author

discussed with Comrade Gao Shuchun many times. He wishes to
express gratitude for his assistance.
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THE EXPLORATION OF THE SPATIAL OSCILLATIONS
IN FINITE DIFFERENCE SOLUTIONS FOR

NAVIER-STOKES SHOCKS

Zhang Hanxin
(China Aerodynamic Research and Development Centre)

In this paper, the spatial oscillations in finite difference solutions
for Navier-Stokes shocks are explored. It is shown that the second order
diffusion term added to NS equations could smear the shock wave, damp
the oscillations in the vicinity of the shock. However, the third order
dispersion term and fourth order diffusion term added to NS equations could

. cause the oscillations in upstream and downstream region of the shock
2* under the conditions given by this paper. Therefore the oscillations in the

* difference solutions with second or third order accuracy could arise from
r-. -the numerical dispersion and diffusion terms.
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Calculation of Boundary Layer Growth Behind An Unsteady

Expansion Wave in a Tube

Wang Songgao

(Institute of Mechanics, Chinese Academy of Sciences) " "

I. Introduction

In order to improve the operating quality of wind tunnels

and shock wave tubes, the study of boundary layer growth after an

expansion wave enters a cylindrical tube is of significance.

Especially in transonic wind tunnels, the boundary layer growth

in the gas storage tube with time will directly affect the
operating time and flow quality of the tunnel. To solve this

problem is the basis of wind tunnel design.

E. BeckerE I] first calculated the boundary layer growth in

the gas storage tube. He used the two element incompressibility

assumption and the 1/7th power velocity distribution to simplify

the boundary layer momentum integral. Then, the solution was
found by using the Blasius skin friction law. Furthermore, an

effective central expansion wave velocity was obtained. Although

the effect of compressibility and heat transfer on p/pc was

considered in the boundary layer and the skin friction

coefficient, the result is still incompressible. H. Ludwieg [21

modified the Becker method for the velocity cross-section and

skin friction coefficient to obtain better results.

J.C. Sivells' work [33 pointed out that corrections must be

made in axisymmetry, skin friction coefficient, velocity cross-

section and effective expansion wave origin. Becker's effective p
expansion wave propagation speed could still be used. In his
calculation, two modifications were made: one is to modify the

result of a flat plate and the other is to correct the origin of

the effective expansion wave according to the start-up time of

the experiment. A numerical method was used in the calculation.

We began directly from the unsteady axisymmetric boundary

layer momentum integral to find the boundary layer growth in and

33



behind the expansion wave assuming that the steady state boundary

layer velocity crss-section and skin friction could be applied to

an unsteady boundary layer, and the axial pressure gradient of

the nuclear flow in the tube is negligible. Finally, the formulas

to calculate the effective expansion wave propagation speed and

boundary layer thickness were found. These formulas are in

algebraic expressions. In the binary incompressible case,

Becker's results are obtained. The computation process is

simple. It is in good agreement with the experimental result.

For engineering design, modification of the origin of the

effective expansion wave can be skipped.

II. Basic Equation and Its Solution
The unsteady boundary layer momentum integral for a tube is:

/21

j -. CJX p ox ro dx

p__ Ot e 2

where )

1 P (2)

Here, p, u and r0 are the density, flow velocity and inner radius

of the tube. The subscript e represents the free flow direction

of the boundary layer. cf is the skin friction coefficient. x

is the axial coordinate and its positive direction coincides with

the propagation direction of the expansion wave. y is the radial

coordinate which points from the wall toward the center. t is
time.
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From
+ a* U, u. + a

"-'i c1" p U,'! ax\'ax a
t. " p,u , dx

Equation (1) can be converted into:
bae 6 a 8o,e a n 1 _

ax U, aX PC ax p'u. at 2 (3)

Substituting the power law velocity distribution into equation

(2), we get

2 [ ' T.1 6 n T__
_*-_ n+2 1 2(n+1) i r 2(2n-1) (1 i- - T.I? 2 .+ (1-  T .-4i 1_

(n-+-1) (n +2) [TiT ) n+3]

ei LO T./ n-1i r, 2 (2n + 1)(, 6 1T. 21

(2n+1) (2n+2) r, LTW T 2"n/2+3J

*When n - , the above formula approaches 1. When n = 7-11, the

change caused by (Te/Tw) = 0.8-1.0 and (6/r0 ) = 0-1 is around

47.. The entire change is approximately 87. Because we assumed

that A is a constant, equation (3) can be rewritten as:

2 a( , 1 ,, (4)
ax+u, ax p. ax) p)u, At 2

Let -- pu. 0
A~ U. (5)

The subscript 4 represents the gas storage state. Equation (4)
is converted into

u . ax U at U. a 2 2 p4u,

. Equation (6) is the basic equation of this discussion.

Generally, an unsteady expansion wave is a wave series of /22

finite thickness. The boundary layer growth in the wave and

behind the wave should be separately discussed. The two

solutions are linked together at the tail of the wave. Figure 1

illustrates this situation. In the following, we will discuss
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in two separate situations and then combine them together.

U. a . - Ue

Figure 1. Schematic Diagram of Boundary Layer Growth

1. composite solution
2. connecting point

(1) Central Wave
When the thickness of an unsteady expansion wave is zero,

the nuclear flow parameters p e and ue in the tube behind the wave

are invariant. Equation (6) can be simplified as:

a U, a- ct (7)

According to the theory of partial differential equation, we can

obtain the characteristic equations for equation (7):

dx -

V d t V A

ds U
dO (8)

Here, V represents the propagating speed of a central expansion

--. *wave. From the above formula, we can obtain an equivalent

differential equation for equation (7):

9 3
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-.- --X "--¢ (9)

where

X=x-gt

After ascertaining cf = cf(e), equation (9) can be solved.

(2) Inside the Wave

Let

= --(10 )

Here, a is the speed of sound. The subscript 4 represents the

gas storage state. We get

431-17 a__a ;A __ -- . _____ an

* _ ___ . 3 (
o- -- - (11)

When , = 1.4, the correlation between parameters inside an
unsteady expansion wave and those in front of the wave is

,u, (12)
-. p~. =( _ _6 )

* We have a,

(13)

The viscosity was approximated by the Sutherland formula~l]: /23
S=1 0. 28r

(14)

Using the above formulas, equation (6) can be written as:
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Because Re. Peue = 4  114 = f(4,n), and cf = cf (On) in

"e 74 1 e

equation (15), the characteristic equation set for equation (15)

is

-s 17 (16)
ds 4 51 12

From the two equations above, we get

(- d_. ) _+(I- d 17= [ -( 1

The solution is =1(c I-10-j)17 (17)
16A

The constant c can be determined later.

From d4/ds = d4/dy dn/ds and equation (17), the equivalent

normal differential equation for equation (15) is:

" " After Cf is determined, ffi ), i.e., o =e(n), can be determined.

. (3) Composite Solution

Strictly speaking, the boundary layer growth process should

be solved inside and outside the wave as shown in Figure 1. The

complete solution is obtained by combining the two solutions at

the end of the wave. Obviously, solving equation (18) is most of

* 38
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the work. We can assume a composite solution: to find an

equivalent expansion wave of zero thickness which results in the

same boundary layer thickness at the tail end of the wave at the

same time as that in equation (18). We used such a zero

thickness expansion wave to find a universal solution. In fact,

it is a problem to find the propagating speed V of an equivalent

central wave.

Assuming that the friction coefficient law is normal: /24

ik(Ree)'" (19)

k is a constant and the subscript e represents taking Re with
respect to e.

Substituting it into equation (9), we get the solution

(+m) Vt-x

(20)

V

a' t  a.

By substituting the unsteady expansion wave correlation into it,

we get:

V

1+ .12 6)I (21)

r+
At the tail n = nI 2= 3, generally, M3 < 0.30 which

1+ I M3

means nI <0.34. nI is a small quantity. After keeping the

lowest order term on the right side of equation (21), we get:

V

1+m ka 7,t v n (22)

The subscript 1 represents the wave tail.
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Corresponding to equation (18), we get

d11

='-- 7"F ,k( - .21)
72

The solution is
I._ * -pa 'Au 25 J/a-,,, _(, a..), T

1+Mi~ IA. 72

(,_o,.,.,,.(, T ) .,,i.-(z +±)'"
7 /25

At the tail of the wave:

.- +M i L 'm --

L+ s, 72 a x

x ( - 0.2 8m ,7)(i _ _ _.,; ),(I -,. + (1 +m ) _] (24 )

[...-. =15 ¢k q!,
72 2-m

1-5/6&
From /1-n f a4 t, we can specify that c f a4t [1-(1- 5 /6 ,).]
Substituting it into the above equation and keeping the lowest

order term in nl, we get:

.1 IP~a,' -,, L 25 a,tk

1+m j )a, 72-at 2-m (25)

Comparing (22)to (25) we get:

V..
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i.e.,

aie, . (26)

V 1or a,2m

a. 0 2-m
(27)

When the flow is binary and incompressible and n =7, m =1/4, A

= n+2/n = 9/7.

3 ( 9 3 j-8 I
This is Becker's result [3 ]. Strictly speaking, the propagating

speed V of the axisymmetric effective central expansion wave is

also related to the velocity cross-section and the law of skin

friction in first order approximation.

III. Results and Discussion

For convenience, we take the absolute value of ue. Then,

equation (9) can be rewritten as:

0 d '  (29)

where

X-Vt-x (30)

V 1 -, ('+I)M,
2-r 2+ (V-1)M, (31)

V= + , V+1 (32)-.

.2 2(2-r)

As long as cf is determined, the solution can be found. /26

We noticed that the value of 1/2-m varies by about 3% when m
1/4-1/7. We also assumed that 6 -8 /9 is a constant

p
(although the not too large variation of 6 -6 /0 is included in

p
the calculation), equation (26) or (27) may be considered

invariant in approximation. Therefore, the assumption that
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- - V . 2 -.

2 ___ _ __ _

2+- M (33)

is not related to the specific laws of velocity cross-section and

skin friction in reference [3] is still valid (approximately) in

axisymmetric conditions. In the normal range, the difference in

the values of (31) and (33) is less than 10%.

Equations (29) to (32) are our starting equations. For

simplicity, equations (31) and (32) can be approximated by the

corresponding Becker's result.

Let us take the Karman modified friction coefficient

express ion

Cj=igRe (0.242)'(1 M
+1Re.+1.1696)(igRe.+0.3010) (1 2 , (34)

and substitute it into equation (29) to obtain the boundary layer

thickness by integration:

a. 0.0293(Vt-x)

3 U. (35)
*/

Subsequently, the expressions for 9/6, 6 /6 and 6 /6 are found.
p

After reorganization, the above formula can be written as:

* c=(±)Ad)'(36)

where
AM- __ + 2 T. )+ 1 1.(2n+2)(2n+3) (u. (2 + 1) (2n+1)(Z2+2)

B-(n+2)(n+3) (+,+i To-).. (n+1)(n+2) (+-;-i. (37)

C - 0. 0293 (Vt - x)

r.[iI(2RU.)]J(1+g. )/I-' M's,2

-.If T e/Tw = 1, the above formula can be further simplified.

Obviously, the computation is simple.
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Figures 2 and 3 are the calculated results.

Figure 2 is a comparison of the calculated results with

experimental values in wind tunnels. They agree very well.
Results calculated by Ludwieg are also shown in the figure.

/27

1.0

0.75/

# /04 M , 002 Re4 -5.1kW'T
0.60 M/ / 0. 3 Re. .7.3 N 10

-H-4ILudwieg

0.25

0 Ii 200 00 40

*Figure 2. Comparison and Calculated Results

1. this work
2. t (microsecond)

J - . C. Sjy.Ils

0 100 NO00 (460 )

Figure 3. Comparison and Calculated Results

1. this work
2. t (microsecond)
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Figure 3 is the comparison of our calculated results wth the

experimental wind tunnel values at Arnold Engineering Development

Center (AEDC). The calculated results deviate from the

• iexperimental values by a certain moment. In the figure, the

* modified result in reference [3] is also given. Sivells used the

start-up time of the experiment to modify the effective origin.

- - This is to add another time correction. When the starting device

is located downstream from the wind tunnel, this correction could

improve the agreement with experimental values. However, this

correction could not be obtained ahead of time in engineering. L
Numerically, this correction value would not bring about a large

error for design purposes. It could be neglected. Of course, it

is ideal to determine this correction in theory.

I In summary, it is possible to theoretically calculate the

boundary layer growth behind an unsteady expansion wave in a

cylindrical tube by using the composite solution of an effective

central wave propagating at a speed V directly from the unsteady

axisymmetric boundary layer momentum integral with some

assumptions. The effective velocity V has been found. Within a

- certain error range, it is not related to the velocity cross-

*section and the law of skin friction. Becker's result is a

special case obtained in a binary incompressible system when n =

(1/7) and m = (1/4). The composite solution is an algebraic

expression which is easy to calculate. The results are in good

agreement with the experiments. For engineering design purposes,

the accuracy is sufficient.
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CALCULATION OF THE BOUNDARY LAYER GROWTH

BEHIND AN UNSTEADY EXPANSION

WAVE IN A TUBE

Wang Songgao
(Institute of Mecianics. Academia Sinica)

Abstract

The problem of the boundary layer growth in the charge tube is dis-

cussed. Based on E. Becker's work and J. C. Sivells' modification, in the

axisymmetric case, a theoretical treatment of the boundary layer growth

in the expansion wave is given, the movement velocity of the equivalant

unsteady expansion wave of zero width is derived; an analytical solution

is obtained and has been reduced to an algebraical expression.lThe result

contains various factors which affect boundary layer growth, axisymmetry,

velocity profile, skin-friction coefficient law and expansion wave thickness

effect. The calculation is simple and the results coincide with experi-

ments.
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Numerical Computation for Inviscid Supersonic Flow
Around a Bent Cone

Ji Chuqun

(Beijing Institute of Aerodynamics)

Abstract

In this work, a computation method for inviscid supersonic

flow around a bent cone was developed using a difference method.

In order to overcome the difficulty brought about by the bent

body axis in the calculation, the equation solving place is

transformed into an inclined plane in the advancing direction

through the Euler transformation of the independent variables.

In other words, an "inclined shift" or "parallel shift" of the

Euler equation was used to solve the problem. Numerical examples

showed that good results could be obtained using this method.

I. Introduction

This numerical method for the characteristics of an inviscid

supersonic flow around a bent cone was based on a difference

method and the shock wave capturing technique with the following

essential points. (1) In order to overcome the difficulty due to

the bent cone axis, the independent variables of the Euler

equation are transformed onto an inclined solving plane which is

the same direction as the thrust. Moreover, the angle of

inclination gradually increases or decreases as the computation

progresses. In other words, the numerical solution of the Euler

equation is found by the "inclined advance" with a varying angle
of inclination or "parallel advance" using right inclined angle.

Its advantage is that the calculation can advance in a rational

direction according to the specific shape of the object to

simplify the calculation and to ensure the accuracy. (2) The

second order two-step MacCormack scheme is used. (3) The
0' computation area is divided into two parts by a transformation

plane (see Figure 1). The part in front of the plane uses the
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front cone cylindrical cocrdinate to solve the Euler equation by

"inclined advance". The part behind the plane uses the rear cone

cylindrical coordinate to solve the Euler equation by "parallel

advance". (4) The computation formulas for the external shock

wave and the boundary are derived from the shock wave ccrrelation

and the boundary compatibility relations, respectively. (5) The

flow characteristics of singular points on the intersect of the

front and rear cone surface are solved individually. The

position of internal shock wave is derived from the pressure

charge in the flow field. No filtering and smoothing process is

included in the calculation. (6) A non-uniform radial lattice is

used so that the number of meshes is increased near the surface

without increasing the total number of meshes.

II. Basic Equations and Boundary Conditions

The coordinate system, attack anglea, and sideslip angleR

used in the computation are defined in Figure 1. Different

equations were used in the "inclined advance" and "parallel

advance" areas for solving the Euler equation. In the latter

case, the conserved Euler equation is used. The specific

computation method is shown in reference [2]. In the following,

the equation in the "inclined advance" region and its boundary

conditions are given.

1. Points in the Flow Field

In a cylindrical coordinate (z, r, q), the aerodynamic

equation for a steady inviscid and thermally non-conductive flow

is:

received on May 16, 1983, revised on Oct. 19
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/30

5z ar r ajo 1 ____

V t+V av p
53z dr r 'P ar r

5z dr r 3 pr dq$

U A V Lp W p + du 43U + i +-dwpr
dz' ar r W ) +R-0

az dr r3 43Z ar -r

The pressure p, density pspeed of sound a, and velocity

components u, v, w are dimensionless. The dimension factors are

M9 and V..* In order to change the solving plane of

- - equation (1) from z =const to an inclined plane r,(z, r, ~

const (with respect to z-axis), new variables ni , and yare

introduced in the following equation.

z E r,, ) ?+ (A + Bri)c oso

U ~ (2)

where
A =ctg 9, * (ctgG*-ctgO,)

1 7* 9

B - (ctgo*- Ctg a')

where noand 9othe initial values of r~and angle of inclination

* of the front cone flow field solution. n~ and 0 represent the n~

value and angle of inclination of the transformation plane (see

Figure 1). f (n,q) and f (r1 ,9 ) represent the external shock

wave boundary and object boundary [r=f (ri,v), r=f 2 (i,,#)],

* 48
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aJ

respectively. I
By using the transformation correlation (2), equation (1)

finally becomes

p" a .,. - e(azG, +G,)

= -(G,-e. (3)

aate

v 1 (G- APE-)
1 1 1

where /31

ar r 3
+ I aw +PU

'-" av w c~ 1 a,
Li,-n €t r 60 Pr

pr at 60

G, - - + AL + -w-La2RA + -!-A

= r
e = . u+?, v+ 1-- 7r.w

= 4P .~U+ ,+ I#

*d17

az E,
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E, - dEq,r, ) -I+rcoso.B

oE ff Enr, 0)dr =(A + Brj))cos 0

-_E*= 1 dE(j,r,O) _ 1 (A+Br,)sin
r r 0 r

Equation (3) is the formula to calculate a point in the

"inclined advance" solving region. When the solving plane*

advances from nI to n , its angle of inclination with the z-axis

also gradually changes from 0, to e*0
2. Shock Wave and Characteristic Compatibility

According to an analysis of the shock wave boundary

characteristics, the only characteristic compatibility in

calculating the shock wave point is the Porter I family

compatibility relation.

(4) /32

+ 77 -L iN3I a2pi, - u-+ 17 , 'v + -L -e Op-F (4)

where pr NyIJ7 07 , r C 177 0,

F= -pa(NG,+NG,+N,G.) +aG, +G,

U,[n.

V=v' u,+v'+W•

* Intl 111 +11 I I-

E" [ 1 +mt +m -n,

where ns, ns2 , and n 3 are the unit normal vector of the shock

wave plane, 2

< , _ m <V
5Z 0/ OI
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"- - In addition, the shock wave point solution should also

satisfy the Ranke-Hugoniot relation:

S S2QI s-

p = p p1 V
(5)

V:. (,-€ .,.
o:=o,_(,_ A_) ".,.

where

L =-;- pp.V-, +p. ,

p, pl, u1, v1, and w, are quantities in front of the wave.

In order to facilitate obtaining the numerical solution, the

Ranke-Hugoniot was differentiated with respect tc ,. It was then

used simultaneously with the characteristic compatibility

relation to derive the differential equation for the shock wave

slope m I

m,-F - L.,
(6)

where

, F =,o[K,. +- .7,<# N , + eK,. + K, N.<), + e.,< + %K#,.<.N3.
P P pr

-,.., 17. K+.)-eK,

L."-pa [(ef. +'"/ '" ke,-- ""')< + "--°,)
*:. -o,(i,.,. + °7,,. + - .
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K, 1

K,- =E .-1 -J

43MI

All the derivatives of flow parameters with respect to m 1 and m
can be obtained from the Ranke-Hugoniot relation.

Equations (5) and (6) are the equations to solve the shock

wave point.

3. Surface Boundary Conditions and Characteristic

* Compatibility Relations

From an analysis of the surface boundary characteristics we

know that there are four compatibility relations in calculating a

* surface point: three flow characteristic compatibility relations

and the Porter II series compatibility relation. They are

* 52
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6P -v+ We__, 7

an p an +3)P '374

~1,~~~N; + a2P (17 au ' + nv+L o___+e- -E

where

E,=Gu+G~v-,-G~u, E,=G,t1 +G,t,+Gt3
E, G. E= -pa (NG 2 +N; ,G, +NG,) + a'G, +G,

/34

Na

nj, n 2~ and n 3 are the unit normal vectors of the surface.

In addition, a surface point should also satisfy the

following boundary condition:

au -~n - -- G (8)ona?7
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where

G=- ( +V 4- W
aq 17 1

The differential equation for a surface point can be ..
derived from equations (7) and (8):

~L (Ja+Js)e+alP 17:Jf+7, 17#1~i3

ae (9)

au ( L W

+=±(Je±w, ~

* where

I - H, --!L + Hz t+ Hn
V

I'= H- +H~tz+Hjnz

i'wP6j I- (Hj+ntGs+n2 G1 +nG.)-o'G, J,--G,

HI =---(G~u +G~ + G~w)

H--(G1 2 +G,t,+G4 :,) , H-Ge
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III. Numerical Computation

The computation of a supersonic inviscid flow is

mathematically a problem to solve the initial boundary value of a

five variable quasi-linear hypobolic equation series. After the

solution on the given initial plane is obtained, the computation

can advance. Specifically for a bent cone, this method involves:

(1) using equation (3) and its corresponding boundary equations

(6) and (9) to find a discrete solution in the "inclined advance"

solving region by transforming the initial plane n. to another

plane (which is perpendicular to the body axis of the rear cone).

Of course, the initial plane and the solving plane must be

spatially directed. (2) The flow parameters and shock wave shape

parameters are converted from the (z1 , ri, 41) coordinate and the (z2
, r2, 2 coordinate (see Figure 1). (3) The transformed plane

is used as the initial plane to find the solution at the object

end by "parallel advance". The specific method is shown in

reference [2]. (4) In the "advance" calculation, we will

encounter some points on the ridge of the surface. The flow may

expand or contract at these points. Therefore, it is necessary

to solve these singular points individually.
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Figure 1. Definition of Attack Angle and Sideslip Angle

1. initial value plane ne
2. transformation plane n'
3. shock wave plane

1. Calculation of Points in the Flow Field

T is used to express a column vector whose components are p,

p,u, v, and w. For equation (3), the pre-estimation step and the

modification step of the MacCormack scheme can be written as

on An. (10)

; ::I : "' + :Z : +"a "( 1 1 )

The values of of Io and aflm , which are derivatives of flow

parameters with respect to E and 9 included in the function of

Wan, were approached by the forward (pre-estimate) and backward
(modification) derivation difference. When the radial mesh

spacing A and circumferential mesh spacing A9 are ascertained,

the integration step An is determined by the stability condition.

2. Calculation of Shock Wave Points

The differential equation (6) was solved by discretization

using the MacCormack scheme. The pre-estimate and modification
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steps are:

(IM-171Y

O n ) " + ' -( ) \ b 1 A ') ( 1 3 ) "

The pre-estimate and modification steps for the shock wave /36

position fl are:

(f/, S..' = j), + (M,),. ,A17 (14)

+ +(f .) , - +'c, (f,),'Y + r (,,:,+ (m)'' . 1
2 2'* iI '~ 31

(15)

The values of am1 /ag in the right function of 8ml/aq can be
approached by the central difference of the m, values at various

9. The values of af/aE for various derivatives of flow

parameters with respect to 9 are approached by the same method as

that for internal points. The values of af/fo are approached by

a two point backward difference method In the pre-estimation

step. In the modification step, they are approached by a three

point derivation difference method.

The simple process of shock wave point computer is described

as follows. The shock wave slope m, was determined by the

difference scheme (12) or (13). The shock wave position fl was

obtained from the difference scheme (14) or (15). f1 was

determined by the central difference of the f value on each

meridian plane. Then, the circumferential slope of the shock

wave f1 and m2 can be obtained from the following equation:

E, +f;,E, (16)
In the above equation

F; -m,E,

1-rn E,
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Finally, flow parameters behind the wave were determined by m1

and m2 using the Ranke-Hugoniot relation.

3. Computation of Surface Points

The same difference scheme as that for internal points is

used to discretize and solve the surface point equation (9). In

the modification step, the radial differential 8f/a& included in

the right function is approached by a three point deviation

difference method.

4. Tightening of Mesh Points Near the Surface

A boundary surface = const was set up to divide the

meshes near the surface. Smaller meshes are used inside and

larger meshes are used on the outside. If the total number of

radial meshes is N and the boundary is set up at i = n', then the

mesh spring inside (close to the surface of the object) is

Outside the boundary, it is

Therefore, the meshes near the surface are significantly

tightened as compared to uniform meshes while the total number of

meshes does not increase.

IV. Calculation of Flow Characteristics at Singularity Points

on the Surface

Because the flow parameters on the intersecting line of the

front and rear cones have multiple values, therefore, they must

be solved individually. The specific method is to establish a

right angle coordinate (Fl, T2, T3 ) at the origin A on the

intersect. t is the direction of the unit normal vector of the
2

front cone surface, T3 is in the direction of the tangent of the
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inner intersecting line and is perpendicular to both t2 and t 3 "

, -T .
T '=IT7,x T,

(D)

The supersonic flow expands or contracts on the 1 -12 plane /37

so that the flow direction is shifted by a certain angle. The

flow parameters satisfy the two-dimensional Prandtl-Meyer

solution or two-dimensional shock wave correlation. Moreover,

the velocity component along i3 does not change beyond point A.

V. Numerical Examples

Several numerical examples are given in the following.

Figure 2 shows the pressure distribution around a bent cone

obtained by the "parallel advance" and "inclined advance" method.

The "inclined advance" method began with the initial value plane

(e0 = 90° ) to e = 740, then from e = 740 to 02 = 90% From

the figure we can see that the results of these two techniques

are identical. The same accuracy resulted.

Figures 3 and 4 show the pressure distribution on the

surface of the object around bent cone A. The geometric*

parameters are 0,= 10° , e2 = 70, n = 8 and eN = 60.

Furthermore, there is a transition link between the front and

rear cones. Therefore, there are two intersecting lines on the

surface. When the angle of attack is large, the inviscid flow

equation cannot appropriately describe the true flow pattern.

Furthermore, the attack angle of the front cone a front = a + 0N

in the computation. Therefore, the attack angle range is greatly

related to the degree of bending of the bent cone. In this

example, the largest angle of attack was 14* and the results are

still good.

59



C. 0•

0.041

Figure 2. Comparison of Pressure Distributions on Bent Cone
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Figure 4. Surface Pressure Distribution of Bent Gone A

i. transition section

variaFigures 5, 6, and 7are the flow field pressure

Scharacteristics and internal shock wave shape of bent cone B (e
-' = e2 = 70, 0N = 13 °) with sideslip. The mesh numbers used in the

calculation were M = 20 (radial) and M = 20 (circumferential).

No filtering was used to smooth the process. The inner shock /38
wave position in the figure is determined by the pressure
variation in the flow field. From Figure 7 we can see that the
pressure change position (i.e., a strong interruption position)
is very obvious when an inner shock wave appears. Therefore, it
is basically correct to determine the inner shock wave position

based on it. In addition, the result of total entropy was

compared with. From the numerical examples, the calculated

entropy of flow field points and boundary points is in agreement

with that of the incoming flow.
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(Z~13.4)

*Figure 6. Shape of Shock Wave of Bent Cone B

1. external shock wave
2. inner shock wave

Figure 7. Pressure Characteristics at Z =14.4 for Bent
Cone B
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A NUMERICAL COMPUTATION FOR THE INVISCID

SUPERSONIC FLOW AROUND BENT CONE

Ji Chuqun

(Beijing Institute of Aerodynamics)

Abstract

A numerical computation method for the inviscid supersonic flow

around a bent cone is given in this paper by using finite-difference method

and shock-capturing technique. In order to overcome the difficulty due

to the bend of the bent cone axis in the advanced process solving equation,

the solving plane of Euler equation is considered as a inclined plane

with the advanced direction using a transform of the equation indepent-

dent variables. The second order, two-step MacCormack scheme is used.

The equation system for boundary compution is derived according to the

characteristic compatibility relations on body surface or shock wave and

corresponding boundary condition. The flow properties of the singular

points on the intersected line between two cone surface are solved indivi-

dually. The non-uniform computation meshes along the direction of

body radius are used in order to raise the computation accuracy when

the gradient of the entropy near body surface is very large. The compu-

tation results in many numerical examples indicate that good results

can be obtained by means of this method.
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Theory of Similarity and the Profile of the Mean Density
Distribution of Hypersonic Boundary Layer

Cai Shutang (Department of Modern Mechanics, The

University of Science and Technology of China)

Gao Shouen (Department of Physics, Hangzhou Teachers College)

Abstract

It is well known that in a boundary layer, the variation of t'J
the physical quantity along the flow direction (the x direction)

is much smaller than that along the direction perpendicular to

the flow (the y direction). At the same time, the velocity in

the "y" direction is much smaller than that in the the "x"

direction. In this paper, we derive the vorticity pulsating

equations by means of neglecting the physical quantity variation
*' in the "x" direction and the velocity variation in the "y"

*direction. In a coordinate system of the average fluid velocity

motion, we introduce the similarity hypothesis to determine the

pulsating velocity and the pulsating density. Based on the
necessary condition of the pulsating similarity, we find the

equation i = k(y + yO)n as the average density variation rule in

the turbulent boundary layer of the compressible fluid. Although

this method is very approximate, it conforms to the experimental

data. This paper demonstrates that in a comparatively large

range, the similarity hypothesis is applicable.

I. Introduction

Many papers have been published about the turbulent boundary
-- layer of the incompressible fluid on a flat surface. Although

* some other papers discussed the turbulent boundary layer of the

compressible fluid on a flat surface, yet their discussions were

incomplete, and their selections of the close systems were quite

arbitrary. In this paper we adopt the vorticity similarity

* conception to study the profile of the mean density distribution

received on May 16, 1983, revised Sept. 20, 1983
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of the hypersonic boundary layer. We directly applied Prof.

Zhou Peiyuan's method (published in 1959) of the compressible

fluid vorticity equations. Based on the premise of the

* similarity conditions, we obtain a few groups of the related

physical quantity equations. They can be simplified to satisfy

the differential equations for the mean density. After

integrating we obtain an exponent equation for the mean density

profile. This process seems to be too approximate. However, the

mathematical results conform with the experiment results in a wide

range.

II. Vorticity Pulsating Equations of Compressible Fluid

First, let us put down the Navier-Stokes equations for

compressible fluid and the Reynolds equation after the Navier-

Stokes equations being averaged by the Reynolds method, i.e.

(p) +- (pUU,) =-A-- + 7-aj, j (1)

o-, axi (2) /50

where, Ui = velocity, p' = pressure, p = density, = stress

tensors other than pressure. As to the relation of the mean

quantity and instantaneous quantity, we have

A-2+A', 1'-o

where, A' = physical quantity and A = pulsating quantity. When

we substract (1) from (2), we obtain
A- ( ; +U~p'+p'. -pu) +- -( .u;+ .=u+p'U.U.
at x

+.Tu,; U- +,p,uI-Up- + U'iP'U-UI rP'U; (3)

S---X ax
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Similarly, we have a continuous equation and an averaged

continuous equation:

*. +-(pU,) =0XP (4)

- +-;5 CP , +'0=0a- a (5)

The subtraction between these two equations results in the

pulsating density equation:

-- " (+,+ P"-P,U ) 0  (6)

In equation (3), when we retain the spin factor, cancel "p"'.

simplify it with equations (5) and (6), and let

=au._: au . , aO, _ a.
ox a%, o ax, a x,

then we can obtain the equation to satisfy the pulsating

vorticity wik

,- aat a G7x-h,,'---uO- aax, (7)

in which, aO, x. 1,a

.~~ a,, +(U a,, , - .i alp ) +a a,,.

ass x
a, P, =+ - .(P'Uj)

* at dx° = i 5xa- tax atax,

atx oix U'Ur axjax6h
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ax ) x ax, axi aX1 a

__ _ - ri +~~ - l a
au Ap +U -A - 8 \U ;- -) axU i ax

/x ax ax, -aAmV x
auk- aPi U_ a i _f)uL~uM ) x

i ai (A~L a . ai (;NuTO
ayx, ax. Pxu\ ax,

_ a Aa~ aTu)-
ax,( ~ kT~ a.xi ax k \ ~ axi '

al U au a - )au a a,
+ xix _x7axk ax ax1

* (2 u: - P U ax( x-, axj 'ax, x ax, a'
a ap, a act

axL (, G&U, ax,! w a xL ax ) AL x, '~'axi

ax x, ox ax,

ax axax axiaiT ax a- x,
a',

ax7ax 'ax ax k x , x

a bax, ax, ax

-FT axioxiaxi ia xi (p'uu

+ (a2 Uiu a~+

T. 1 ~_UL +- aaspu)

axiaxi
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III. Similarity and Mean Density of the Supersonic Boundary

Layer

First, let us consider the steady state conditions, in which

the partial derivative of the average quantity of equation (7)

with respect to time is zero. Secondly, when we consider the

supersonic boundary layer, the "x" derivative term of an average
quantity can be neglected as compared to its "y" derivative. At

the same time we can omit the velocity terms in the "y"

direction. Then by adopting Zhou's method, we introduce a

coordination system of motions which varies with the point "P 0

and also introduce a similar condition

A

Let,

then (8)

in which "xi", which can usually be considered as the origin, is

the coordinate of point "Po" in the coordinate system of motion.
fix " is the coordinate of a certain point in this system, and ""

is the characteristic length of the pulsating quantity. We

* further substitute (8) to the vorticity pulsating equation (7),
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and eliminate the viscosity terms in (7). In this paper, we are

not going to write the details of the derivation because of the

complexities of these equations. Here we only present the

coefficients in front of the nondimensional F( i ) of all the

terms in these equations. There are seven different coefficients

as follows:

q dU - U

dA ' ®d d
®udu.

In order to obtain the similarity of the pulsating velocity "U ,"u

and the pulsating density "p"' in the profile of the boundary

layer (i.e., in the profile of the boundary layer, the functions

of *h(Ei) and *(E ) are identical), the ratios of these seven

constants have to be independent of the "y" coordinate.

Therefore, coefficient (3) is directly proportional to

coefficient (4), i.e.,

_!qdU acq_!PdU

After eliminating, (dU/dy)q we obtain d _ /53
A (9)

Similarly coefficient (5) is directly proportional to (6), then

1. 4.cq~i4

When we eliminate q 2 , we obtain

A cc A-L (10)

When we eliminate "A" in (9) and (10), we obtain
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dy dO;• -- ? '(11)

in which "C" is a constant. Simplifying, we obtain

i-i-.d, (11)'

After integrating, we obtain

InIL - Ij +In K
dy (12)

in which InK is an integration constant. Simplifying, we obtain

d; -. K C
d-.y (12)'

After shifting the terms, we obtain

Then after integrating, we obtain

1-

in which "Y is an integration constant. After simplifying, we

. obtain.-.-.. .A; CK QI - C) 3T'e (Q + y.) -'-

Let 1-' CK(1-C)3,-'" /54

"-"" A K "(y + y,)"
we obtain (13)

* Further, let -"

After dividing "v" with p® , we obtain

. . - --2--K • ' +u ) (14)
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This non-dimensional equation expresses the mean density.

IV. Comparison: Theory and Experiment

Let us use the graphic method to find the accuracy of the

equation by using the x abcissa to represent the data calculated

from the equation (14) and the ordinate to represent the

experimental data. If the calculated results agree with the

experiment results, then all the corresponding points should fall

on a 45 ° line from origin. The comparisons are displayed in

Figures 1, 2 and 3. We can see that all the points are

practically falling on the 450 line in each figure. These

figures explain that except on both ends of each line (which show

some deviation) the theoretical calculated data essentially agree

with the experimental results.

V. Discussion

It is concluded that the similarity assumption is quite

approximate, yet it is practical for application.

-1.0 -0.8-0 .06--.4 -0.2

jgS

0.
P -0.8

Figure 1. P. = 3200cmHg, d = 4 inch, n = 0.98, no= 0.15,
K' = 0.606

1. calculated
2. experimental
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-0.2

S -0.6

-0.6

Figure 2. P.= l700cmHg, a 4.5 inch, n =0.92, =0.13,

K' =0.71

1. calculated
2. experimental

-0.8 -0.6 -0.4 -0.2

IgP±
-0.2

30.

i -0.4

-0.6

Figure 3. P. = 500cmHg, 8 6 inch, n =0.88, r*=0.15,
K' = 0.96

S 1. calculated
2. experimental

74



References /55

[1] Zhou Paiyuan, Journal of Mechanics, 3, 4 (1959), 281-297.

Chinese Science, 8 (1959), 1095-1119.

[2) Zhou Paiyuan, Quarterly of Applied Mathematics, 5, 3

(1947), 346-353.

[3] Cai Shutang, Symposium of Theoretical Physics and

Mechanics, 161-185 (1984), Science Publishing Co.

(4] NASA, N75-33347.

75

* 75



1168-84 /56

The Engineering Numerical Technique for the Determination

of the Inviscid Flow Field Heating Rate on Ballistic
Re-entry Vehicles

Yang Maozhao, He Fangshang

(China Aerodynamic Research and Development Center)

Abstract

RVSPHR (The Ballistic Re-entry Vehicle's Shock Pressure and

Heating Rate Computer Code) is an approximate numerical technique

for the determination of the inviscid aerodynamics and heat

transfer of re-entry vehicles. In the transonic flow region

surrounding the nose stagnation point, the distribution of the

surface pressure and the shock angles is assigned from the

correlation. With the assumptions for the profiles of pressure

* and normal velocity along body-normals in Von Mises coordinates,

local iteration is carried out at each normal to determine the

shape of the shock wave based on mass continuity satisfied along

that normal. In the downstream supersonic regions, the exact

Euler equations of motion are integrated using the finite-

difference method. The surface heating rate is calculated using

a non-inviscid flow. All calculated results are compared with

more rigorous solutions as well as experimental results and good

agreements have been found.

V I. Introduction

The determination of the aerodynamic characteristics using the

numerical technique of inviscid flow and the analysis of the

aerodynamic heating process using numerical calculation of the

* boundary layer have been successfully carried out. However,

since the rigorous numerical calculation is time consuming and

- . costly, it has not been widely employed for carrying out the

" initial engineering estimations in certain applications. For

engineering application, we have used engineering approximate

solutions for treating the transonic region in rigorous inviscid
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flow calculation. The iterative numerical procedure in solving

- the elliptic equations for the subsonic region surrounding the

nose stagnant point is avoided. This simplifies greatly the

problem of the subsonic region and accelerates the calculation

without sacrificing much of the accuracy or affecting the

solution of the downstream supersonic region. With this

approach, we have determined the correlation equation of the

surface pressure distribution and the shock angles in the

transonic region around the nose as well as the profiles of

*pressure and normal velocity along body-normals in the shock wave

* layer. The position of the shock wave corresponding to each

normal on the surface is determined by local iteration or overall

iteration based on mass conservation. The solution of the

transonic region provides the preliminary data of the profiles

for calculating the downstream supersonic region. The exact

* Euler equations of motion for the supersonic region are

integratedusinga numerical technique with the finite-difference

method.

Although this technique for determining the inviscid flow

field is an approximate method, it is a technique for calculating

the overall flow field in regarding the estimation of pressure

distribution and the shape of the shock on the aircraft. It

provides the necessary data for boundary layer calculations with

consideration of the effects of entropy swallowing. Based on

this technique, we have further derived a method of integration

with the momentum in the boundary layer and a method of entropy

swallowing calculation relating to mass balance of the flow. The

new technique does not need to carry out iterations on the

parameters of the outside edge of the boundary layer and much

less computer time is required in calculating the boundary

parameters and the surface heating rate.

We have carried out calculations on many aircrafts and wind

tunnel test models. The results are in good agreement with

, these obtained from more rigorous solutions and experimental

data. There are also significant savings in computer time.

ManuscripL submired Mar. 24, 1983, revised June 18, 1983
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II. Summary of the Technique /57

(1) Technique for the Determination of the Inviscid Flow

The purpose of this technique is to avoid the iterative

calculation in solving the elliptic equation in the subsonic flow

region surrounding the front edge of the passive nose. The

following approximations and assumptions are made in the

calculation of the transonic flow region around the nose:

1. The pressure distribution in the transonic region (from

stagnation point to the sonic point) is determined using

engineering equations. Love's modified equation [ I ] is used in
the calculation of the upstream region of the sonic point.

Matched Newtonian equations with Prandtl-Meyer expansion are used

*i for the region after the sonic point. The equations by curve

* fitting for the latter are shown in the following:

For M <1.2,

p=p.{1 +1.08sin'[(x/2) -O)][exp(-4V In s/s ) -13-0.468 exp(-4Vl-n-s'I/)}

2.1-1

For M >1.2,

1=P 1-[1.46143-o.5u43sin 0--o- 180 A 180

2.1-2

Where e, s, e s are the dip angle and arc length of the

surface at local point and the sonic point respectively. P0 is

the pressure at the stagnation point, which can be expressed by

the following equation with ideal gas:

.--. V+ /7-3+ ]2 . -

-2.1-3

For equilibrated air, it should be calculated by iteration

* from the relations of the thermodynamic characteristics using the

entropy behind the normal shock wave and the accurate enthalpy, h5
at the stagnation point. All quantities used in this paper are

dimensional and in metric system.
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2. In the shock wave layer with relatively small spherical

angle, the profile of the normal velocity on the surface other

than the flow at the stagnation point can be correlated with the

profile at the stagnation point using the following equation:

v(0) = U) .V(0.)
V(Y.) 2.1 -4

where v0 (C) is the normal velocity distribution of the flow at

the stagnation point. v0 (ys), v(4s) are the normal velocities

behind the shock wave at and away from the stagnation point

respectively. The values are fixed with given shape of the shock

wave. v0 (E) can be determined using the pressure distribution of

the flow at the stagnation point. According to the numerical

technique for the determination of the inviscid flow[2 1 , P (O)

can be fitted in the following equation:

P( ) P,+ (Pu.-PO)V ""' 2.1-5

where psko is the pressure behind the normal shock wave. From

Equation (2.1-5), the enthalpy distribution, h0 (E), can be

calculated and the following equation is obtained:

v () CVg j Ch-h (1) 2.1-6

In Von Mises coordinates, the relationship of the flow

function and the normal coordinate y is

d#=purdy 2.1-7

which gives

1 2cosO * 1 d 1 5
cON r4  .pu 2.1-8 /58

In the region near the stagnation point, using

=Y°/Y6 =Y/Y1 2.1-9

the value corresponding to each point y in the flow at the
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stagnation point can be easily calculated.

3. The following profile of pressure along body-normals in

the shock wave layer is assumed:

P(O)=Pb (P&-Pb (0.),2.1-10

where Pb is the estimated surface pressure from previous

engineering equations, ps is the value of the pressure behind

the shock wave in the profile.

4. The initial shape of the shock wave is

%--I

~~2.1-13

The above calculations can be carried out if the distance, 

from the body to the shock wave on the flow line at the

stagnation point is available. The value of h can be

scalculated from:

Y.a 0=(.1284+Ot77-0.025 6ap M_ )R, 11

For an ideal gas the following equation may be used

y, 0...+jg(),. 2.1-15

After obtaining the values of the flow field parameters, p and u,

of the calculating cross-section, the new position of the shock

wave y can be determined by the requirement of mass continuity,

0 which gives

y,,.,= . =-;Ss+ C-o, -,-do¥ J" .1 1

C r [ A'-" 2.1-16

Since the calculated position of the shock wave may not be

consistent with the original position assigned, additional

iterations are necessary until the ults of consecutive
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iterations show the desired accuracy. This is the local

iteration process for obtaining the shape of the shock wave.

With this calculation technique, we have also developed an

overall iterative procedure. After obtaining the positions of

the shock wave on the cross-sections along all body-normals by

local iterative procedure, the new distribution of the shock

angles, Bsh, can be obtained by parabolic fit or spline fit of

the shape of the shock wave. Equation:

2.1-17

is used to replace the old equation of the shock angles (2.1-13)

and a new local iteration for the profile along each body-normal

is carried out for further improving the estimation of the

position of the shock wave. Better convergency of the

calculation can be obtained with e2 = 0.2- 0 .6.

The above calculation is carried out from one cross-section

to next cross-section starting from the point near the stagnation

point until the velocity u reaches the sonic velocity at one

particular cross section. After that the calculation should be

carried out following the procedure for supersonic region.

Since the calculation in the supersonic region is carried

out in boundary layer coordinate system (s,y), which is different

from the Von Mises coordinate system ( s ,+) and the preliminary
r

cross-section data for the calculation should be obtained by

interpolation, the simultaneous equations, as shown in the

following vectors, for calculation of the supersonic region can

be derived from Euler equations of motion for the stable,

inviscid and compressible axisymmetric body.

2.1-18 /59

where
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F9- -. 7 W-W. -7- .L

1

A + C p1'H

. I = .__(A+Ca H +i77 y, A + C o 0pu E E 0

0 0 A ;

I a H (sin O+a Cos 0)"i

r Ex =[l f (sin O+a cosg) 1+a2

r R

0

S.. a H -o 7 y

A=- '74Y
•= u = y , ax E =I- (a'/u)

a - 1-/ s/ap). s a

S==Y/y.(x) o =vlU

H=I+(MIR) R=Cos /- r=,ri+yCose
tax dx2

At point E = (n +O)AE, n = Em + (1/2)]An, W = 0.625 the above

equations can be rearranged in implicit forms to give:

F., t+, + A*.. to= go.; 2.1-19
*ii

X where

A...

a Aii~c _ **::

an(' I is the unit matrix. Two of the elements can be expressed as
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2A::=(A-::+A:*)+(I- )(A:. 1 +A:)

1

The solution of the above finite-difference equations can be /60

obtained by the catching up technique. The recurrence relations

of the coefficients are as follows:

:""..,. = &=: .. 2.1-20

2.1-21

where a+' is the inverse of Am+4, II... I represents the
determinant.

In addition

o+, ,=Go+&
2.1-22

With impermeable body surface, 0= 0, then

C .- G, 2.1-23

where '.(0,1,O)

GoO

Therefore, the values of PM, G. within the shock wave can be
determined by the recurrence relations starting from the surface

of the body. Combining with the shock wave condition of Rankine-

Hugoniot, EMo is readily obtained from the relation of the shock

wave: I C-GM

Then, the values of

can be obtained from the finite-difference equation (2.1-19) by

calculating back to the surface.
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II. Improved Entropy Swallowing Technique

It is well known that the effects of entropy swallowing of

the boundary layer are usually determined by mass balance. The

- mass flow swallowed by the boundary layer should be equal to the

* mass flow which passes through the bow shape shock wave along the -

inviscid flow. The equation of mass conservation of the flow

path can be written as

2,'. -~ue~2.2-1

where the momentum thickness of the boundary layer, eM, can be

determined from the following axisymmetric equation of momentum:

dO, Ice (2+H, du, +.. dp+ +_dr\ 2+2-2
.d p. ds 7 d.-

Iterations are needed to converge the values on both sides of

equation (2.2-1). The estimated shock angle (or shock height rs )

as well as the values of the parameters pc' uc and Mc should be

modified continuously. The convergency can be tested by

substituting the value of e determined from equation (2.2-2) in

equation (2.2-1). This is the iterative process used previously

for entropy change. In our analysis, the axisymmetric

integration equation of momentum is written in terms of the total

differential form of the mass flow. Equation (2.2-2) is

rewritten as
d

(Pe (u. r Oa) + P1 (1 +H,) (p, u.r.O)) 1 dON
ds 2 u. dU 2.2-3

where Hc is the mode parameter depending on the flow. It can be /61

written in the following two expressions for laminar and

turbulent flows respectively.

For laminar flow:

H.= 2.59156 h./h. +h,/h,-I
2.2-4

H.-0.14286 I(-7 I,)
For turbulent flow: , h.(Z-)+

dz
h.+(h,-h.)z+ (I,-h.)z1

• I'h, z' dz2.2-5
h.+(h,-h.)z+ (h.-h,)z'

.84
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where

[: ~ Ap uh (2.2-6)

Cf can be related to the heat flux, 4 , by Reynold's analogy. It
f w
should be noted that equation (2.2-3) is different from equation
(2.2-2). The mass flow pcucreM is considered to be a single

parameter and it can be calculated by Euler's method or Runge-

kutta method of integration utilizing the solution of the

inviscid flow. rs is then obtained from equation (2.2-1) and the

entropy behind the shock wave at position rs can be calculated by

0 interpolation from the shape of the inviscid shock wave. The

peripheric parameters at the outer edge of the boundary layer, PC,

, uc, .hc, Mc can be calculated along the flow using the pressure

distribution of the inviscid flow. Iterative modifications of

the value of duc/ds in equation (2.2-3) are carried out. The

above calculation is made repeatedly with newly calculated u

value until the convergency is reached. Practically, the

convergency can be reached shortly. It takes much less computer

time than the technique of variable entropy with iterative

calculation on all the peripheric parameters such as PC, uc and

hc.This is an improved numerical technique of variable entropy.

III. Results of Calculation and Comparison

All calculated results of the inviscid flow, including shock

shape, surface pressure distribution and the flow field profiles

through the shock layer, are compared with more rigorous

0 numerical solutions as shown in Figures 1, 2 and 3.

Calculations are carried out on a semiconic body having a cone

angle of 100 at various Mach numbers and elevations with

equilibrated air and ideal gas. The results indicate that the

shock shape and surface pressure dtstribution are quite

consistent with vigorous numerical solutions. The position of
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shock wave determined by local iteration and the off-body

distance of the shock wave at the stagnation point obtained by

parabolic interpolation are compared with rigorous numerical

solutions and show relative deviations within 1.1% to 1.8% as

listed in Table 1. The density and velocity profiles of the flow

in the shock layer at M = 2.0 are in good agreement with

reference [2]. Some deviation of the pressure profile is

observed near the body surface, while good agreement is

approached near the shock wave.

4.,

U._ 7. 9

0o

-2.4

-1.0 -0 1.0 2.0 3.0 4.0 5.0 6 0~SAW.
Figure 1. Shock Shape

1. our result
2. numerical solutions of [2]

7'.

*.. M,-.2" • * lf(l

.L300

200

.- 10 0.1 0 20

zL/R.

Figure 2(a). Surface Pressure Distribution on the Nose

1. ideal gas
. 2. our result

3. numerical solutions of [2]
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0 10 20 30
X/ .,

Figure 2(b). Surface Pressure Distribution on the Body

1. ideal gas
2. our result
3. numerical solutions of [2]

to -0.S a
x/n16 -o., 03.,2..6 1 '

P_5

0.2 0.4 0.0 0.8 4. 1., .

Figure 3. The Flow Field Profiles in the Shock Layer

1. equilibrated air
2. our result
3. numerical solutions of [2]

Obviously, the approximation technique for the transonic flow

region does not cause significant error in overall calculation of

the inviscid flow field and much less computer time is required

than more rigorous solutions. This technique is very effective
and feasible in engineering applications.

Table 1

~ 0.055 0.054

-*.,i 0.131 I o.1o

Key on following page.
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1. equilibrated air
2. ideal gas
3. our result
4. reference [2]

We have also made a calculation based on the experimental

model of Widhopf [3 ]  The pressure distribution is shown in

Figure 4. The calculated results are in good agreement with the

experimental results. The calculated heat flux at various flow

conditions is shown in Figures 5, 6 and 7. The experimental

results of reference [3] and the boundary layer numerical

solutions of reference [4] are also shown in the figures. Our

calculated results are quite satisfactory in comparison.

mp/p

• 0.8

0-~

Win - .N34in
0.4

0.2

-.1 0.2 0.40.6 1.0 2 4 6 610

Figure 4. Comparison of the Calculated Pressure Distribution
With Experimental Data

1. our results
2. experimental data of [3]

2.0 R,. 0.4.634

Figure 5. Distribution of Heat Flux

1. our results
2. numerical solutions of [4]
3. experimental data of [3]
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P 444.087kg.'
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'

1. 1 '. -. 1 .- i

Figure 6. Distribution of Heat Flux

1. our results
2. numerical solutions of [4]
3. experimental data of [3]

T- 73.1%Ij O
R. .0 014

0 1 2 3 4S/9.

Figure 7. Distribution of Heat Flux

1. our results
2. numerical solutions of [4]
3. experimental data of [3)

Our numerical technique can be extended to three dimensional

calculation with angle of attack using suitable coordinate

transformation and analogical approximation of axisymmetry.
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Visualization of Three Dimensional Separated Flows Using

the Smoke Wire Technique

Xia Xuejian

(Beijing Institute of Aeronautics and Astronautics)

Abstract

The smoke wire technique is used for visualizing the vortex

flow at the wake of an axisymmetric body and the asymmetric

vortices which emanated from the nose of the aircraft at high

angle of attack. The smoke wire technique can be employed for

automatic photograpis by the sequential circuit, conditional
photographs or manual operation.

I. Introduction

Various techniques for visualization of the flows have been

applied in aerodyamic research, especially in some complicated

flows such as the separated flow, jet flow and wake flow emanating

from wings and the fuselage at high angles of attack. They are

also effective tools for studying the separated flow and the

structure of the turbulence on nonflying passive bodies.

Recently, various new techniques for visualizing the flows have

been explored.

The smoke wire technique has been applied since the fifties.

Recently, this technique has been gradually used in the

visualization of complicated flows. Reference [1] employed this

technique to visualize the bubble separation of the laminar flow

and the transition of the boundary layer of the flow about the

wings. It indicates that the technique can be used in flows

which cannot be measured by hot wire probe or pressure

transducer. We have used the smoke wire technique in studying

the three dimensional separated flows such as the waKe flow on a

three dimensional passive body. The flow pattern exhibited was

consistent with the measurements obtained with hot wires.

Various periodic characteristics of the flow were observed
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visually. This technique has also successfully detected the

presence of asymmetric vortices emanating from the nose of the

body at high angles of attack without lateral gliding in wind

tunnel experiments. Since the smoke lines are very thin, detail

flow pattern can be observed. This technique can be widely used

in research for its convenience and less environmental pollution.

The limitation of this technique is on the wind speed of the

- test. It cannot be applied at high Reynolds Number. Reference

[2] has compared in detail the characteristics of the separated

flows on wings, fuselage and whole body at high angles of attack

tested in water tunnel, wind tunnel and test flight at

corresponding limits of the Reynolds Number. It also analyzed

the effect of Reynolds Number on the separated flows. Since the

0 separated flows around sharp edges or fixed edges are less

sensitive to Reynolds Number, the smoke wire technique can

provide more quantitative measurement on the flow pattern.

Additional analyses are necessary for more complicated flows

which are affected by the Reynolds Number. The flow spectrum on a

fuselage at high angles of attack using smoke wire technique can

provide qualitative information.

II. The Equipment for Smoke Wire Display and the Technique of

Operation

Figure 1 shows the equipment of smoke wire display for
studying the wake flow. The system consists of three positions:

the first portion is the smoke generator, which is located in the
-.• wind tunnel. The second portion is the process electrical

* system, which includes power source for heating the smoke wire /72

and the synchro control box. The third portion is the light

source, camera and the activation system (the portion in the dark

shown in the picture).
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Figure 1. Equipment for Smoke Wire Display

1. The Smoke Wire Generator and the Operation

Figure 2 shows the smoke wire generator which is composed of

resistance wire, supporting frame, the feedback passage of the

resistance wire. The resistance wire is for generating the smoke

by heating. It can be a tungsten wire, nichrome wire or

stainless steel wire. Stainless steel wire is more favorable

since it has high resistivity, fixed strength and less tendency

to become brittle. The diameter of the resistance wire depends

on the experiment. A size of 0.15mm is suitable in general. For

certain flow conditions which may be distributed by the wire, the

selection of the diameter should be more careful. Reference El]

provides some information on the selection of the wire. It

should be noticed that the diameter of the resistance wire

affects the smoking time. Since the diameters of the oil drops

attached on a thin wire are smaller, the duration of smoking will

also be shorter. The tension on the resistance wire will also

*affect the mass flow of the smoke. The equipment employs a

tension bolt to adjust the length of the resistance wire.
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Figure 2. The Structure of the Smoke Generator

1. resistance wire
2. top bracket
3. bottom bracket
4. top support
5. bottom support
6. supporting pole
7. tension bolt for the steel wire
8. tension bolt for the steel wire
9. receptacle for conducting '-ire

Specially selected oils should be used for smoke generation.

Smoke oil for model trains, paraffin oils as well as other oils

have been used in experiments. Experimental results indicate

that glycerine can provide longer smoking duration and more clear

*flow pattern. The smoking duration can be a few seconds with a

wind speed of about 2 M/sec. The duration is long enough for

taking photographs.

Various tests have been carried out for selecting a better

* method to coat the oil. The oil can be extruded from the top

* bracket by compressed air or dripped down from the top end of the

*resistance wire. It is found by experience that uniform /73

* distribution of oil, which gives uniform flow spectrum, can be
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obtained by coating manually on the resistance wire with a brush.

2. Electrical System of the Smoke Wire Process

,2.2K

4,s,

I 0GU

Figure 3. Circuit Diagram of the Synchro Box

1. flash light
2. flash light
3. conditional output
4. auxiliary output

5. smoke wire input
6. smoke wire output
7. auxiliary output

8. camera
9. camera

10. relay
11. relay
12. gate circuit
13. time delay unit
14. time delay unit
15. conditional input
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16. initiate switch
17. potentiometer -1
18. potentiometer -2
19. rectifying bridge
20. voltage stabilizer
21. bypass switch

The sequence of activating the smoke wire and the camera is

controlled by two time delay circuits. The first time delay unit

=i controls the duration of the electric current which passes
through the resistance wire for heating. The second time delay

unit controls the delay time before activating the camera. The

time duration of both units is adjusted by the potentiometer.

The arrangement can be changed when using conditional input

(the flow spectrum is obtained by activating the flash light at

the occurrence of a special event). Figures 3 and 4 show the

circuit diagram of the synchro box and the distribution of the

process durations.

i mm: ifMat

..:.:.:UA WS -

Figure 4. Diagram of the Process Durations

* 1. automatic signal
2. delay -1
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3. delay -2
4. conditional input
5. output of the flash light and the camera
6. auxiliary output
7. position 1
8. position 2
9. delayed duration
10. heating the smoke wire by electricity
11. "smoke visualized"
12. input=output
13. switch off
14. switch off
15. logic 1
16. switch on
17. switch off
18. input=output
19. switch off
20. input=output
21. switch off

There are three types of "input" and "output" for the

circuitry:

1) Power Input and Output for the Smoke Wire

The timing circuit of the smoke wire is on when the

direct current with variable voltage is connected to the smoke

wire input of the synchro box and the output is connected to the

smoke generator. The "input" and the "output" is connected /74

internally when the "bypass" switch is on, which bypasses the

timing circuit.

2) Conditional Input and Output

This method can be used to photograph the flow pattern

of a special event. The input signal in this mode should be

compatible with the TTL circuit (integrated circuit of

transistor-transistor logic). During working condition, the

input voltage should be low (Figure 4) at the beginning and jumps

to a high value when the event occurs. This causes the second

timing circuit in high voltage at the same moment and provides

output to activate the flash light and the camera. A low current

(few mAs) triggering circuit can be used for activating the flash

wlight. A momentary high current (up to 4 amps, 60 volts)
triggering circuit should be employed to trigger the camera.
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It should be noticed that the conditional photograph is

usually carried out in the dark. The shutter of the camera is

open when the "initiate switch" is on. The flash light is

triggered and the film in the camera is exposed for recording

when the conditional event occurs and the "smoke" is visible.

The shutter of the camera is closed when the time is out.

Usually the signals of the hot wire can be recorded

simultaneously when the flash light is triggered. Therefore the

flow pattern observed can be compared with the measurements of

the hot wire for studying the flow structure.

3) Auxiliary Input and Output

" This is a universal input which makes the system more

- flexible in application. It can provide an adjustable auxiliary

output with time delay for any signal input. Usually the best

* flow spectrum can be observed a few moments after the resistance

.. wire is heated. The auxiliary input and output can be used in

such cases for photographing.

One of the above three types of input and output can be

selected as needed for processing.

The principle and the working procedure of the synchro

box of the process circuit have been discussed above. In

addition to the synchro box, it needs a power supply with

variable voltage for heating the resistance wire. The current

should be about 2-3 amps and the variable voltage should be in

" the range of 0-100 volts. Figure 5 shows the circuit diagram of

the power source for heating.

220V • AC

Figure 5. Circuit Diagram of the Power Source for Heating
the Smoke Wire

1. momentary switch
2. switch
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4.

3. Light Source and the Photographic System

Strobe light was used as the light source on top of the wind

tunnel for studying the wake flow. The frequency of the flash

was adjustable from 1-13/sec. A plane light source was employed

for obtaining the flow pattern of a cross-section of the three

dimensional flow. The camera was a regular one of type 135. The

shutter was activated by a compressed air switch controlled by

the triggering circuit with the application of the auxiliary

input/output.

Described above is the smoke wire technique which we have

used to investigate the wake flow of a three dimensional passive

body. Recently, we visualized the separated flow with positive

results at high angle of attack using a simple manual operation.

The equipment included a smoke generator, a coupling transformer

and a resistance wire heated by AC. Pictures were taken at the

best conditions depended on visual observation with naked eye.

* The smoke wire technique with manual 'operation is simple and easy

when the conditional photograph is not necessary and manpower is

available.

III. Examples of Visualization of the Three Dimensional /75

Separated Flows Using Smoke Wire Technique

Hot wire measurement of the wake flow of an axisymmetric

body with declined base surface indicates that a strong periodic

flow appears near the wake at certain angles of decline (such as

700, 60*). The periodic phenomenon becomes less regular with a

declining angle of 90 ° (vertical tail cut). The result has been

demonstrated by visualizing with smoke wire. Pictures 3 and 2 of

the flow patterns obtained by the smoke technique (with base angle

of 700 and 900) are shown in the inside back cover. The front

end of the model was a semi-ellipsoid and the crabbing angle and

angle of attack were zero.

Picture 1 indicates clearly the regular separation of the

vortex which is more serious at the top than at the bottom. The

same characteristic was also detected by hot wire measurement.
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The separation of the vortex with a base angle of 90* as shown in

Picture 2 was less regular than that at an angle of 70° , while

the intensity was about the same from top to bottom. Intensive

vortices occurred only occasionally. This characteristic is

consistent with that obtained by hot wire measurement. The

detailed results were reported in reference [3].

•- - Picture 3 (inside back cover) is the photograph of the

- vortex flow emanating from the nose of the body at high angle of

attack obtained by smoke wire technique. The flow pattern is

quite similar to that obtained in water tunnel testsas reported

in reference [2] (Figure 31 in reference [2]).

Figure 6 is a sketch of Picture 3. The model is at zero

crabbing angle and with an angle of attack of 460. The picture

shows clearly two asymmetric vortices emanating from the front

edge of the nose. The center portions of the vortices are shown

in the picture. The vortex at the left side is at higher

position than the one at the right side. The left vortex

proceeded a longer distance before breaking apart while the one

at the right side broke into spiral eddies moving in reversed

direction. According to the analyses for slim fuselage in

reference [2], the angle to initiate the asymmetric vortices is

slightly retarded and the lateral position of the vortices is

moved outward somewhat at low Reynolds Number. However, it has

qualitatively recognized the asymmetry and the breakdown of the

vortices.
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Figure 6. Sketch of the Breakdown of the Asymmetric Vortices
at the Ncse of the Fuselage

1. left vortex

2. right vortex
3. asymmetry of the vortex
4. breakdown of the vortex

Picture 4 (inside back cover) (from reference [4]) shows the

back vortex on the right side of the body with an angle of attack

of 310. The swirl and the position of the center of the vortex

are clearly observed.

IV. Conclusion

The smoke wire technique can be used to visualize the two

and three dimensional stable flows as well as three dimensional

separated flows. It can provide quantitative as well as

qualitative information on the characteristics of the separated

flows. It can be employed to take conditional photographs of the

flow pattern at certain special occasions. The method is simple

and flexible. It can provide the detailed structures of the

flows. The smoke wire technique is an effective tool for

studying complicated flows.

Picture 3 is photographed in cooperation with Shen Xialing

of the Project Group.
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VISUALIZATION OF THREE DIMENSIONAL

SEPARATED FLOWS USING THE

SMOKE WIRE TECHNIQUE

Xia Xuejian

(Beiing Institute ol Aeronautics and Astronautics)

Abstract

The smoke wire technique is used for visualization of the vortex
flow in the near wake of an axisymmetric body and the asymmetric
vortices which emanate from the nose of body at high angles of attack,

as well as the vortex breakdown above the wing. The smoke wire techni-
que is available for automatic photograph by the sequential circuit, con-

'. ditional photographs or manual operation.
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The Application of Surface Hot Film in Aerodynamic Testing

Wang Tiecheng

(Nanjing Aeronautical Institute)

Abstract

Investigation of the boundary layer by means of measuring

the magnitude and direction of the wall shear stress is very

important in aerodynamic research. Surface hot films provided a

new method for this study. This paper was written on the basis

of development and testing of the surface film. The basic

methods of experiment and limits of application were introduced

with our typical experimental results.

Introduction

When air flows along a wall surface (solid surface), the

shear stress, Tw, is

where P is the (dynamic) viscosity of the air, u is the velocity

of the air along the x axis.

Using surface hot films to measure the surface shear stress

has many advantages. Since the hot film is attached to the wall

and is parallel to the surface, the interference of the flow is

small. It can be applied in conditions of low and high pressure

gradients. It has high sensitivity to frequency response and can

-. be used to measure the dynamic change of the surface shear

stress. It can also be employed to measure the direction of the

wall shear stress. When the surface hot film is employed to

measure the absolute value of the wall shear stress, it is

necessary to calibrate the hot film. The calibration is usually

quite complicated. However in many boundary layer experiments,

only the relative magnitude and the relative change of the wall

shear stress are required to be measured and the calibration of

the hot film is not necessary.
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*The first hot film successfully developed in China, the M-1

hot film, had been certified by the Technical Group of the

Department of Aeronautical Technology in October, 1982. It had

been formally used in aerodynamic experiments. This article was
written based on the development and experiments of the M-1 hot

film.

Structure and Theory

There are three types of hot film deperiding on the difference of the

structure: type M, type B and type C. They are composed of the E ij
substrate, heating film and lead wires. The substrate of type M Qrr .]

hot film is a flexible, heat-resisting plastic film. On top of

it there are dual heating films distributed in V-shape. The

substrate for type B hot film is a cylindrical insulator. The

single hot film is located at the left end surface of the

cylinder (as shown in Figure 2a). The lead wires are at the

right end.

The advantage of this type of hot film is that it contains a /78

metal protective jacket (Figure 2b and 2c) and is convenient in

installation. Type P (see Figure 3) is basically similar to type

B. The only difference is that it has a shorter substrate

cylinder. It looks like a disk and does not have the protective

jacket. Both type P and type M hot films use adhesive to attach

to the wall, while type B hot film can be attached to the holes

of the wall by friction force. All three types of hot films

should be in parallel to the surface when attached to the wall.

Heat is generated when electricity is passed through the

heating film on the wall. When air is forced to flow along the

surface of the wall, the process of heat transfer between the

wall and air is usually called the forced convection heat

transfer. The magnitude and the direction of the shear at the

surface of the wall can be measured by the amount of heat

transferred by forced convection. The following equations are

* 105
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obtained theoretically:

F=Nu, - N"__
Nu, +Nu,

(3)

where Nu is the Nusselt number (dimensionless heat) of the forced

convection heat transfer between the wall surface and the air

flow, e is the angle between the direction of the wall shear

stress and the symmetric line of the dual heated films (Figure

5), F is the parameter related to the direction of the shear

stress on the wall surface, subscripts 1 and 2 refer to the two

heating films.

,:.

V3 _____

Figure 1. Type M-1 Surface Hot Film

1. substrate
2. heating film
3. conductive film
4. leading wire
5. 13 mm
6. 11 mm
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Figure 2. Type B-i Surface Hot Film

(a) 1. substrate
2. welding
3. heating film
4. conductive film
5. leading wire

(b) 1. protective jacket
2. leading wire
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IAN 3

Figure 3. Type P Surface Hot Film

1. 1.5 mm
2. conductive film
3. heating film
4. substrate
5. leading wire

Connecting tthe surface hot film to the measurement circuit 179
of the isothermic hot wire - hot film wind speed meter (CTA),

then

Nu -c -E'
_I&-_T (4)

where E and E0 are the output voltage readings of the electrical

bridge of the hot wire hot film wind speed meter and its initial

reading, k is the thermal conductivity of air, AT = Tw - Tw is
the difference between the working temperature of the heated film
and the temperature of the in-flow, c is a constant related to

the size and material of the heating film.
Regardless of the temperature change of the air flow, using

single heated film to measure the surface shear stress, the

following equation can be obtained from Equations (2) and (4):

EE'-A (5)

where A is a constant which can be determined by calibration.
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In the case of using dual heated films to measure the

surface shear stress, if the geometric size, material and working

temperature of two films are the same, and the angle 0 is not too

big, from Equation (3) and Equation (4), it gives:

F (El-E,,)+(E,-E) =B8~ (6)

where the constant B can be determined by calibration.

Equations (5) and (6) are the basic functions in using

surface hot film to measure the direction and magnitude of the

wall shear stress.

Applications
Using the calibrated surface hot film to measure the wall

shear stress is one of the basic applications. The measurement

is not very complicated. According the Equation (5),

measurements of the voltage output E and the initial reading Eo
of the electrical bridge are enough to determine the magnitude of

. the wall shear stress. Figure 4 is obtained by calibrating the

wall shear stress within the low speed boundary layer on type M-i

surface hot film using a Preston tube. It indicates a linear

relation between E2 _ E2 and iw. It has also verified Equation
0 w

(5), which is obtained theoretically. In measuring the wall
shear stress, the value can be obtained by measuring E2 -E

0
value. Table 1 lists the T values obtained from the calibration

curve by measuring the E2  E values at various flow velocities

V within the turbulent boundary layer on a flat plate using type

M-I, surface hot film. It indicates that the results are very

close to those obtained from theoretical calculation.
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0.32

1. 102 1.04 1.06 1.0 1.10 1.12 1.14

Figure 4. The Calibration Curve of the Type M-1 Surface Hot Film

1. (volt
2)

2. (newton/M
2 )1 /3

The second application of the surface hot film is to measure

the direction of the wall shear stress, i.e., the direction of

the local flow. Figure 5 shows the results of the calibration of

the directional sensitivity of type M-1 surface hot film. The

calibration was carried out under the condition of constant

inflow direction. Various F values were obtained by measuring E1
E2 , E0 1 and E02 with different angle 0 between the symmetric

line of the hot film and the direction of the inflow.

Table 1. The Measured T Value (unit: Newton/M2) Using Type /80
M-1 Surface HoY Film

V. (*/0) 25.40 24.60 23.98 23.27 j 22.4 21.79 21.10

S - 1.49 1.43 1.35 1.26 1.17 1.12 1.03

t is A8). 1.53 1.45 1 1.38 1.31 1.24 1.16 1.01

1. (M/sec)
2. (surface hot film)
3. (calculated result)
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Figure 5 shows that F has a linear relation with e in the range
-35 4 0<35*. Equation (6), which is obtained theoretically, is

also verified. With the calibration curve, the value can be

obtained experimentally through the F value by measuring the

values of El, E2 , E0 1 and E0 2 '

The use of a surface hot film for measuring the wall shear

stress can be applied in all boundary layers with two or three

components, compressible or incompressible flows, laminar or

turbulent boundary layers, and with high or low pressure

gradients. Therefore, the use of surface hot film to measure the

condition of the boundary as well as to determine the transition

point and the point of separation of the boundary layer is more

meaningful than the measurement of the wall shear stress alone.

It has a much broader range of applications. Since the objective

of most investigations is the determination of the positions of

transition and separation in the boundary layer, it is

unnecessary to measure the absolute value of the wall shear

stress. It needs only to determine the relative magnitude of the

* shear stress at various locations along the flow for comparison

purposes., In such experiments, it is unnecessary to calibrate the

surface hot film. The relative magnitude of the shear stress can

be represented by the output voltage of the electrical bridge.

The measurement is simple and reliable. The application is

illustrated using the following example with transverse flow

around the cylinder (two dimensional circle). The condition of

the low velocity boundary layer on two dimensional circle is

complicated and typical. There are many research results on two

dimensional circles in both theoretical and experimental studies. It is

readily able to judge the reliability of the experimental results

of the surface hot film.

S
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Figure 5. Results of Sensitivity Test of the M-1 Surface Film
on the Direction of the Wall Shear Stress

1. heating film 1
2. heating film 2

V..

Figure 6. The Central Angle Measured From the Arrest Point

1. point of measurement

1.12



The central angle 9 of the two dimensional circle is the angle

between the measuring point (where the surface hot film is

located) and the direction of the inflow. It is measured from

the arrest point as shown in Figure 6. Figures 7, 8 and 9 show

the test results of the M-1 surface hot film and the results of

similar tests carried out in foreign countries. These figures

indicate that the results obtained from tests with surface hot

films are quite consistent with those obtained from other testing

methods. The test results of the M-1 surface hot film are

consistent with those obtained with the surface hot films

developed in foreign countries. The i shown in Figure 8a is the

current passing through the hot film.

The test results shown in Figure 7a are those under a

* typical flow condition with Red = PV md/i 3.5 x 105 (d is the

diameter of the cylinder), where separation of the two

dimensional circle occurs. As shown in Figure 7a, the wall shear

stress (time average value) increases with the increase of the

angle y from 9 = 0. It reaches a maximum with 9 approaching 60*

and then decreases abruptly when it approaches the separation /81

point. The test results are consistent with the rules.

110!
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Theoretically, the second order derivative of the curve should be

negative. The curve should intersect with the horizontal axis at

the point of separation, at which the wall shear stress is zero.

The separation point in the actual flow is fluctuating which

makes the wall shear stress show a minimum near the point of

separation. The separation point can be determined to be about

780 based on the test result, where there is an abrupt decrease

of the wall shear stress. Determination of the separation point

by measuring the distribution of the root-mean-square value of

the pulsating wall shear stress is a more sensitive method. The

distribution can be represented by the root-mean-square values

of the pulsating voltage output of the electrical bridgej 'e-

0j4T as shown in Figure 9.

.'4 F"

t2 6 0

. % . r

- 3

~i 3.

Figure 9. Test Results of the Distribution of the Pulsating
Wall Shear Stress on Two Dimensional Circle

1. (my)
2. M-1 hot film
3. imported hot film
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Since the root-mean-square value of the pulsating wall shear

stress at the separation point is a maximum, it can be used to

determine the position of the separation point. The peak appears

clearly at 9 = 780 on the curve shown in Figure 9 and the

separation point is readily determined. Another method to

determine the position if oint of separation is to observe the

pulsating signal of t' -age at various values as shown in

Figure 10. Since tl- ooi- oscillating, the waveform

obtained at = the arrest point.

The wall shear st- periodic

function with frc asing frequency

of the Karman's arbation appears

on the waveforr e of separation. The

4 waveform at pl- ..e typical characteristic of I

the flow in the

Figure 10. The VOILJt: ....L1 uL o iype M-I Surface Hot Film
Tested on iwo Dimensional Circle. Red = 1.7 x 10

117 K
. ....



Figure 7b illustrates the application of the surface hot

film in studying the transition of boundary layer from laminar

flow to turbulent flow. Since the effective Reynolds Number is

larger than 3.5 x 105, the test results of the distribution of

the wall shear stress are different form those obtained at low

Reynolds Number. Figure 7b shows that the laminar boundary layer

extends to = 1000 before separation. Gas bubbles appear at v =

1100 to y = 1100. The turbulent boundary layer is reattached to

the surface at y = 1100, and it is separated from the surface at

= 1400.

Figure 11 shows the test results of using surface hot film

-to measure the wall shear stress on the surface of a wing. The

surface hot film is located at x = 0.8b in the front edge of the

wing. During experiments, the voltage output of the electrical

bridge is monitored with fixed V and changing angle of attack.

The test results show that the turbulent boundary layer exists on

top of the wing from the leading edge to x = 0.8b with a< -1° .

When = -1, the transition point is located at 0.8b. The wall

shear stress is a minimum at this point. The wall shear stress

increases significantly when the measuring point gets into the

turbulent boundary layer. With further increase of the angle of

attack, the thickness of the boundary layer increases and the

wall shear stress decreases. The turbulent boundary layer

separates at x = 0.8b, when a = 120.

No further discussions of the basic applications and testing

methods of the surface hot film are included due to limitation of

the size of this paper. A significant amount of studies on the

surface hot film as well as the testing methods are currently in

progress around the world. Further applications of the surface

* hot film in aerodynamic tests are very promising.

1
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Figure 11. Measurement of the Surface Shear Stress on NACA0012
Aerofoil Using Type M-1 Surface Hot Film (Red =
2 x 10')

1. (mv)
2. laminar flow
3. turbulent flow
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THE APPLICATION OF SURFACE HOT FILM
IN AERODYNAMIC TESTING

Wang Tiecheng
["- (Nranjing Aeronautical Institute)

Abstract

In the study of boundary layer, by means of surface hot film, a new
way is provided to measure the magnitute and direction of wall shear
stress. This paper is written on the basis of investigation and testing of

q' surface hot film. Some basic methods of experiment and limits of applica-
tion are introduced with our typical experimental results.
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Measurement of the Correlation Between the Fluctuating

Pressure and the Fluctuating Velocity in a Turbulent

Boundary Layer

Bian Yuzhong

(Harbin Aerodynamic Research Institute)

J.F. Morrison and P. Bradshaw

(Imperial College of Science and Technology, U.K.)

I. Introduction

The first measurement of the pressure-velocity correlation

was conducted by Kawamura and Serafini. Afterward they published

many papers on the research of the correlation between the

fluctuating wall pressure and the fluctuating velocity, as well

as the power spectrum. In their papers, the detail results of

the correlation between the fluctuating wall pressure and the

fluctuating velocity were supplied by Willmarth and Wooldridge

(Ref. 1).

Bradshaw (Ref. 2) studied the correlation between the

fluctuating wall pressure and fluctuating velocity in a drastic
decelerating boundary layer. He discovered that the convection

velocity was slow in the boundary with a reverse pressure

gradient. He also utilized Townsend's concept of inactive

surface in a reverse pressure gradient.

Willmarth (Ref. 3) and Cantwell (Ref. 4) discussed the

experimental study for the structure of the turbulent boundary

layer. In recent years, due to the improvement of

instrumentation and related technology, a great deal of progress

was made in the understanding of the turbulent boundary layer.
R.A. Antonia (Ref. 5) discussed the application of the

conditional sampling in the turbulent measurement.

The discovery of the law of motion of turbulence along the

wall surface advanced the study of turbulence structure. One of

the important methods to study the motion is the conditional

.* sampling technique. This paper employed the average of the
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primary conditional sampling technique.

The purpose of this paper is to study the correlation

variation of the fluctuating wall pressure and the fluctuation

longitudinal velocity along the longitudinal (x-direction) and

perpendicular (y-direction) distances from the wall. It also

describes the structure of the turbulent boundary layer from

these variables.

2. Experimental Equipment

The parameters of the wind tunnel for this experiment are

listed as follows: testing cross-section, 76.2 x 12.7

centimeters (30 x 50 inches); length, 2.74 meters (9 feet);

normal wind speed, 30 meters per seconds; the turbulence rate of

the longitudinal free flow in the test section, less than 0.17.;

longitudinal pressure gradient, zero.

All the experiments were conducted on the lower tunnel wall.

Wires of 0.5 mm diameter were installed on the exit and on the

tunnel conversion section for the flow transformation. The mean

flow properties, such as the cross section profile of the

averaged velocity, the thickness of the boundary layer, thickness

of the dislocation boundary layer, and the momentum thickness,

were measured with a Pitot tube whose motion in the boundary

layer was controlled by a traveling mechanism. The velocity

profile and the heat sensor correction constants were obtained

from the system analysis performed with a microprocessor. The

shear stress on the wall was measured with a Preston tube.

The fluctuating wall pressure was measured with a high

sensitivity piezo-resistance transducer. The transducer had an

outside case with a diameter of 2.29 millimeter and was capable
2• to measure a pressure as low as 2 pound/in (maximum output:

about 300 mv). It was installed on a copper disc which was

mounted on the lower wall of the wind tunnel. Figure 1 shows the/10

installation diagram of the transducer and the hot wire sensors.

12
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The piezo-transducer was driven by a special designed strain-gage

amplifier or a power gage. We adopted the amplifier or the power

gage because they could eliminate ordinary interference and they

also obtained a wider range of gains. The response of the

transducer frequency was calibrated by a Bruel and Kjaer

frequency spectrum analyzer.

set

. 4

Figure 1. The Installation of Piezo-transducer and Hot Wire

1. hot wire
2. piezo-transducer
3. filling material
4. diameter, 2.3mm
5. hot wire rack
6. piezo-transducer
7. filling material
8. copper disc
9. wind tunnel wall

10. direction of flow
11. stationary transformation wire

The fluctuating velocity was measured by a hot wire rack

containing 6 single hot wires.

The signals generated from the piezo-transducer and hot

wires were recorded on a magnetic tape with a 14-channel tape

recorder. Then they were digitalized from the analog data by a

PDP computer.
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3. Measurement

All the measurements were conducted in the boundary layer

- transformed from the fixed transformation wire after the

*" convergence section.

The properties of the turbulent boundary layer are measured

as follows:

I I _ _ I I I IR""' (, e, lee C 8(2,) d'(mm) 4e(am)fu(*l.)j t.(4 llla)

28.4 5.3 ; 10' 1 6520 1 0.0027 1 . 4.6 13.6 1.0.5 1 1.26

1. meter/seconds 2. Newton/meter2

The reliability of the non-dimensional power spectrum of the
wall pressure ranged 0.038< wv/u2 < 2.* r

The measurements were conducted in the range of 1 Hz< f< 20
KHz. Hot wire sensors could be moved in the direction of upstream

or downstream of the piezo-.transducer. This experiment selected

three downstream positions of the transducer: x, - 0, 20, and 40
millimeter. At these three positions, we recorded the wall

pressures and the longitudinal fluctuating velocities which were

all the functions of time.

The correlation coefficient of pressure-velocity was

calculated by the following definition:

Rp.(x,,x,,x,,- ,(x0, Ot)u(x+x,,x,, OI t+r)

,/p' (XO, Ot);'(*+=,x,,O, t)

4. Results

The root mean square values of the fluctuating pressure in

the range of 1 Hz <f< 20 KHz were calculated from the /102

experimental data as follows:

V " T 1. Direct Measurement
2. Datum Analysis

3.1 X IQ-$ 3. Data from ref. (1)
RNm kfi 3.96 10-3 x10 '

NOCn* 2.64 i.-,o
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The fact that the 1 /rw value of this paper is larger than

that from Ref. (1) can be explained as follows: both the flow

velocity and the Reynold number (based on the momentum thickness)

were smaller, it is also possible that the experimental data were

measured in the range of 1 Hz< f< 20 KHz, and consequently the

low frequency signals were not filtered. Therefore, in the low

frequency test range the noise and the wind tunnel vibration

interfered with the experiment results. The data of Ref (1) was

conducted in the range of 100 Hz< f <10 KHz, hence, the signals
with the frequencies below 100 Hz and above 10 KHz were filtered.

Their measurement was conducted in a very narrow frequency range.

Therefore they eliminate the noise interference in the low

frequency range.

The fluctuating velocities were measured at different

positions along the "y" direction with a rack containing six hot
wires. It is quite obvious that the hot wire sensors themselves

could change the structure of the air flow.

This experiment proved that a regular component of the

fluctuating pressure was directly affected by the recognizable

velocity characteristics.

Figure 2 shows the pressure velocity correlation

coefficients calculated from Equation (1) as a function of the

non-dimensional lagging time [U.(T-T')]/6

1 1 .j 1.B ' -jj . .

3.160

-.A .13.14

4.0,

M.1 .4.1

Fig. 2(a)
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Fig. 2 (b)

air6-Lu. air-c
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- qll 4l .411

Fig. 2(c) /103

Figure 2. Correlation Between the Fluctuating Velocity
and Fluctuating Pressure

The lagging time 'T' was obtained along the longitudinal

direction from the local average velocity measured by the hot

wire on each specified location. For convenience, U 'ie/ is

used to replace T'. At every specified position, on the planes

which are respectively parallel to the air flow and perpendicular

to the wall surface, the correlation coefficients R measuredpu
with the hot wire and the piezo-transducer on the wall vary
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similarly.

Figure 2(a) shows that at the longitudinal position xl/6*=

0, the correlation coefficient decreases rapidly with the

increase of the distance from the wall surface. The maximum
value of Rpu decreases from 0.185 to 0.065. Figure 2(a) also

shows the variations of the correlati.n coefficient curves when x,

/6" equals to 4.51 or 8.96. The maximum of the variation is less

than 0.1.

.4.0kV +- l I _

)b&i
.  

4.

Figure 3. The Changes of the Fluctuating Correlation of

Pressure Velocity According to "y"
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Figure 4. The Changing of the Fluctuating Correlation of
Pressure Velocity According to 'Y'

At different longitudinal position from X1/6 the

fluctuating correlation of the pressure velocity changes with the /104

change of the distance from the wall surface, as shown in Fig.

(3). Figure 4 shows when x 1 /6 = 0.56, 3.16 and 7. 33 , the
correlation coefficient decreases with the increase of the

distance x116 .This trend is very obvious near the wall

surface. When y/6* - 1.92, 4.63 and 6.09, the curve concaves. A

comparison of the data shows that the magnitude of the extreme

*values of the correlation coefficient decreasesbut the intervals

of the lagging time T increase. When the hot wire is near the

wall surface, the lagging and the variation are large.
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condition and Reynold's number (based on the momentum thickness).

3. The fluctuating pressure on the wall surface is directly

related to the fluctuating velocity above wall surface. The

reverse flow velocity, which is the disturbance velocity directly

related to the interference of the wall surface pressure, is the

local averaged velocity.

4. The correlation coefficient of fluctuating wall surface

pressure and the longitudinal fluctuating velocity is affected by

the experiment interference.
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MEASUREMENT OF THE CORRELATION BETWEEN THE

4o'

"' .L FLUCTUATING PRESSURE AND THE FLUCTUATING

VELOCITY IN A TURBULENT

BOUNDARY LAYER

Bian Yuzhong
(Harbin Aerodynamic Research Institute)

J. F. Morrison and P. Bradshaw

(Imperial College of Science-and Technology, U. K.)

Abstract

Measurements of the space-time correlation between the fluctuating

wall pressure and the fluctuating velocity in a turbulent boundary layer

with zero longitudinal pressure gradient are reported.

The structure of the pressure-velocity correlation was obtained from

measurements of the correlation between the fluctuating pressure and the

fluctuating velocity at various distances in x-direction and various points,

in y-direction in the boundaryrlayer. The largest variations of pressure-

velocity correlation with x-direction and y-direction distances from the

pressure transducer are near the pressure transducer.
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